计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230300236-6.doi: 10.11896/jsjkx.230300236
吴蕾, 王海瑞, 朱贵富, 赵江河
WU Lei, WANG Hairui, ZHU Guifu, ZHAO Jianghe
摘要: 针对现有行人重识别方法在提取行人特征时存在特征不对齐、忽略相邻区域语义相关性、背景杂乱以及训练效率低的问题,提出一种多尺度局部特征融合的方法。首先引入空间变换网络对图像进行自适应仿射变换,实现行人空间特征对齐;接着横向均等分割不同尺度的特征图,对相邻局部块采取不同的拼接方式,以弥补切割造成的相邻块关联性信息缺失的问题;再融合全局特征与局部特征,挖掘二者之间的关联性。同时,融入随机擦除的方法对数据集进行处理,防止模型过拟合;并且使用多种损失函数对网络模型进行训练,提升模型的类内紧致性和类间差异性。将所提方法在Market-1501和DukeMTMC-ReID数据集上进行实验,Rank-1分别达到95.0%,88.8%,mAP分别达到89.2%,78.9%,结果表明所提方法能够提取更具判别力的行人特征。
中图分类号:
[1]MING Z,ZHU M,WANG X,et al.Deep learning-based person re-identification methods:A survey and outlook of recent works[J].Image and Vision Computing,2022,119:104394. [2]YAO Z,GONG X,CHEN R,et al.Research progress,challenge and prospect of local features for person re-identification[J].Acta Automatica Sinica,2021,47(12):2742-2760. [3]ZHAO H,TIAN M,SUN S,et al.Spindle net:Person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1077-1085. [4]MIAO J,WU Y,LIU P,et al.Pose-guided feature alignment for occluded person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:542-551. [5]LIU J,NI B,YAN Y,et al.Pose transferrable person re-identifi-cation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4099-4108. [6]PANG Y X,ZHANG H X,ZHU L,et al.Feature generation based on relation learning and image partition for occluded person re-identification[J].Journal of Visual Communication and Image Representation,2023,91. [7]SUN Y,ZHENG L,YANG Y,et al.Beyond part models:Person retrieval with refined part pooling(and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:480-496. [8]WANG G,YUAN Y,CHEN X,et al.Learning discriminativefeatures with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia.2018:274-282. [9]FU Y,WEI Y,WANG G,et al.Self-similarity grouping:A simple unsupervised cross domain adaptation approach for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6112-6121. [10]ZHENG F,DENG C,SUN X,et al.Pyramidal person re-identification via multi-loss dynamic training[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:8514-8522. [11]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Utah,USA:IEEE,2018:7132-7141. [12]CAI H,WANG Z,CHENG J.Multi-scale body-part maskguided attention for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019. [13]LI W,ZHU X,GONG S.Harmonious attention network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2285-2294. [14]CHEN T,DING S,XIE J,et al.ABD-Net:Attentive but Diverse Person Re-Identification[J].arXiv:2019.00844,2019. [15]ZHANG G Q ,LIN W S,CHANDRAN A K,et al.Complementary networks for person re-identification[J]Information Sciences,2023,633. [16]MENG Y B,MU S R,LIU G H,et al.Person re-identification method based on GoogLeNet-GMP based on vector Attention mechanism[J].Computer Science,2022,49(7):142-147. [17]JADERBERG M,SIMONYAN K,ZISSERMAN A.Spatialtransformer networks[C]//Advances in Neural Information Processing Systems.2015:2017-2025. [18]LIU L,LI X,LEI X M.A Person Re-Identification Method with Multi-Scale and Multi-Feature Fusion[J].Journal of Computer-Aided Design & Computer Graphics,2022,34(12):1868-1876. [19]LUO H,JIANG W,ZHANG X,et al.Alignedreid+ +:Dynamic-ally matching local information for person re-identification[J].Pattern Recognition,2019,94:53-61. [20]LI S S,LIU X L,ZHAO Y,et al.Person re-identification based on multi-scale constraint network[J].Pattern Recognition Letters,2020,138:403-409. [21]ZHANG W F,HUANG L,WEI Z Q,et al.Appearance feature enhancement for person re-identification[J].Expert Systems with Applications,2021,163:113771. [22]ZHOU K Y,YANG Y X,CAVALLARO A,et al.Omni-scale feature learning for person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Los Alamitos:IEEE Computer Society Press,2019:3701-3711. |
|