计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230500109-8.doi: 10.11896/jsjkx.230500109
李丹阳1, 吴良基1, 刘慧2, 姜静清3
LI Danyang1, WU Liangji1, LIU Hui2, JIANG Jingqing3
摘要: 随着数据中心规模的不断扩大,所引起的高能耗、高运营成本和环境污染等问题日益严重,严重影响了数据中心的可持续性。大多数数据中心能耗优化方法为了降低计算能耗,会将任务集中在尽可能少的服务器上,但这样做往往会导致数据中心热点的产生,并且提高了冷却能耗。为了解决这一问题,文中首先对数据中心进行建模,并将数据中心总能耗优化问题建模为一个任务调度问题,并且要求调度过程中不产生数据中心热点。为了解决该问题,文中提出了一种基于深度强化学习的数据中心任务调度方法,并使用奖励塑造对该方法进行优化,在不产生热点的前提下降低数据中心的总能耗。最后,通过仿真环境和真实数据中心负载跟踪数据进行了实验。仿真实验结果表明,所提方法相比其他现有的调度方法能够更好地降低数据中心总能耗,最多降低了25.5%。此外,提出的优化方法还不会产生热点,这进一步证明了其优越性。
中图分类号:
[1]NADJAHI C,LOUAHLIA H,LEMASSON S.A review ofthermal management and innovative cooling strategies for data center[J].Sustainable Computing:Informatics and Systems,2018,19:14-28. [2]DING J,ZHANG H,LENG D,et al.Experimental investigation and application analysis on an integrated system of free cooling and heat recovery for data centers[J].International Journal of Refrigeration,2022,136:142-151. [3]TENG F,YU L,LI T,et al.Energy efficiency of VM consolida-tion in IaaS clouds[J].The Journal of Supercomputing,2017,73(2):782-809. [4]KAPLAN J M,FORREST W,KINDLER N.Revolutionizingdata center energy efficiency[J].McKinsey & Company,2008:1-13. [5]HE K,LI Z,DENG D,et al.Energy-efficient framework for virtual machine consolidation in cloud data centers[J].China Communications,2017,14(10):192-201. [6]ILAGER S,RAMAMOHANARAO K,BUYYA R.ETAS:Energy and thermal-aware dynamic virtual machine consolidation in cloud data center with proactive hotspot mitigation[J].Concurrency and Computation:Practice and Experience,2019,31(17):e5221.1-e5221.15. [7]LIN M,WIERMAN A,ANDREW L L H,et al.Dynamic Right-Sizing for Power-Proportional Data Centers[J].IEEE/ACM Transactions on Networking,2013,21(5):1378-1391. [8]FELLER E,ROHR C,MARGERY D,et al.Energy Management in IaaS Clouds:A Holistic Approach[C]//2012 IEEE Fifth International Conference on Cloud Computing.2012:204-212. [9]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Playing Atari with Deep Reinforcement Learning[A].arXiv,2013. [10]KIRAN B R,SOBH I,TALPAERT V,et al.Deep Reinforce-ment Learning for Autonomous Driving:A Survey[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(6):4909-4926. [11]GU S,HOLLY E,LILLICRAP T,et al.Deep reinforcementlearning for robotic manipulation with asynchronous off-policy updates[C]//2017 IEEE International Conference on Robotics and Automation(ICRA).2017:3389-3396. [12]WANG Y,LIU H,ZHENG W,et al.Multi-Objective Workflow Scheduling With Deep-Q-Network-Based Multi-Agent Reinforcement Learning[J].IEEE Access,2019,7:39974-39982. [13]AKBARI A,KHONSARI A,GHOREYSHI S M.Thermal-Aware Virtual Machine Allocation for Heterogeneous Cloud Data Centers[J].Energies,2020,13(11):2880. [14]LIU H,LIU B,YANG L T,et al.Thermal-Aware and DVFS-Enabled Big Data Task Scheduling for Data Centers[J].IEEE Transactions on Big Data,2018,4(2):177-190. [15]AGHASI A,JAMSHIDI K,BOHLOOLI A.A thermal-awareenergy-efficient virtual machine placement algorithm based on fuzzy controlled binary gravitational search algorithm(FC-BGSA)[J].Cluster Computing,2022,25(2):1015-1033. [16]TANG Q,GUPTA S K S,VARSAMOPOULOS G.Energy-Efficient Thermal-Aware Task Scheduling for Homogeneous High-Performance Computing Data Centers:A Cyber-Physical Approach[J].IEEE Transactions on Parallel and Distributed Systems,2008,19(11):1458-1472. [17]DONG T,XUE F,XIAO C,et al.Task scheduling based on deep reinforcement learning in a cloud manufacturing environment[J].Concurrency and Computation:Practice and Experience,2020,32(11):e5654. [18]LI F,HU B.Deepjs:Job scheduling based on deep reinforcement learning in cloud data center[C]//Proceedings of the 4th international conference on big data and computing.2019:48-53. [19]CHENG M,LI J,NAZARIAN S.DRL-cloud:Deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers[C]//2018 23rd Asia and South Pacific Design Automation Conference(ASP-DAC).Jeju:IEEE,2018:129-134. [20]MAO H,SCHWARZKOPF M,VENKATAKRISHNAN S B,et al.Learning scheduling algorithms for data processing clusters[C]//Proceedings of the ACM Special Interest Group on Data Communication.New York,NY,USA:Association for Computing Machinery,2019:270-288. [21]SHI L,WEN L,LEI S,et al.Virtual machine consolidation algorithm based on decision tree and improved Q-learning by uniform distribution[J].Computer Science,2023,50(6):36-44. [22]LU H F,GU C H,LUO F,et al.Virtual machine placement strategy with energy consumption optimization under reinforcement learning[J].Computer Science,2019,46(9):291-297. [23]BELOGLAZOV A,ABAWAJY J,BUYYA R.Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing[J].Future Generation Computer Systems,2012,28(5):755-768. [24]MOORE J D,CHASE J S,RANGANATHAN P,et al.Making scheduling “Cool”:Temperature-aware workload placement in data centers[C]//USENIX annual technical conference,general track.2005:61-75. [25]LILLICRAP T P,HUNT J J,PRITZEL A,et al.Continuouscontrol with deep reinforcement learning[J].arXiv,2019. [26]PARK K,PAI V S.CoMon:a mostly-scalable monitoring system for PlanetLab[J].ACM SIGOPS Operating Systems Review,2006,40(1):65-74. [27]LU C,YE K,XU G,et al.Imbalance in the cloud:An analysis on Alibaba cluster trace[C]//2017 IEEE International Conference on Big Data(Big Data).2017:2884-2892. [28]WANG L,VON LASZEWSKI G,DAYAL J,et al.TowardsThermal Aware Workload Scheduling in a Data Center[C]//2009 10th International Symposium on Pervasive Systems,Algorithms,and Networks.2009:116-122. |
|