Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230500109-8.doi: 10.11896/jsjkx.230500109
• Network & Communication • Previous Articles Next Articles
LI Danyang1, WU Liangji1, LIU Hui2, JIANG Jingqing3
CLC Number:
[1]NADJAHI C,LOUAHLIA H,LEMASSON S.A review ofthermal management and innovative cooling strategies for data center[J].Sustainable Computing:Informatics and Systems,2018,19:14-28. [2]DING J,ZHANG H,LENG D,et al.Experimental investigation and application analysis on an integrated system of free cooling and heat recovery for data centers[J].International Journal of Refrigeration,2022,136:142-151. [3]TENG F,YU L,LI T,et al.Energy efficiency of VM consolida-tion in IaaS clouds[J].The Journal of Supercomputing,2017,73(2):782-809. [4]KAPLAN J M,FORREST W,KINDLER N.Revolutionizingdata center energy efficiency[J].McKinsey & Company,2008:1-13. [5]HE K,LI Z,DENG D,et al.Energy-efficient framework for virtual machine consolidation in cloud data centers[J].China Communications,2017,14(10):192-201. [6]ILAGER S,RAMAMOHANARAO K,BUYYA R.ETAS:Energy and thermal-aware dynamic virtual machine consolidation in cloud data center with proactive hotspot mitigation[J].Concurrency and Computation:Practice and Experience,2019,31(17):e5221.1-e5221.15. [7]LIN M,WIERMAN A,ANDREW L L H,et al.Dynamic Right-Sizing for Power-Proportional Data Centers[J].IEEE/ACM Transactions on Networking,2013,21(5):1378-1391. [8]FELLER E,ROHR C,MARGERY D,et al.Energy Management in IaaS Clouds:A Holistic Approach[C]//2012 IEEE Fifth International Conference on Cloud Computing.2012:204-212. [9]MNIH V,KAVUKCUOGLU K,SILVER D,et al.Playing Atari with Deep Reinforcement Learning[A].arXiv,2013. [10]KIRAN B R,SOBH I,TALPAERT V,et al.Deep Reinforce-ment Learning for Autonomous Driving:A Survey[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(6):4909-4926. [11]GU S,HOLLY E,LILLICRAP T,et al.Deep reinforcementlearning for robotic manipulation with asynchronous off-policy updates[C]//2017 IEEE International Conference on Robotics and Automation(ICRA).2017:3389-3396. [12]WANG Y,LIU H,ZHENG W,et al.Multi-Objective Workflow Scheduling With Deep-Q-Network-Based Multi-Agent Reinforcement Learning[J].IEEE Access,2019,7:39974-39982. [13]AKBARI A,KHONSARI A,GHOREYSHI S M.Thermal-Aware Virtual Machine Allocation for Heterogeneous Cloud Data Centers[J].Energies,2020,13(11):2880. [14]LIU H,LIU B,YANG L T,et al.Thermal-Aware and DVFS-Enabled Big Data Task Scheduling for Data Centers[J].IEEE Transactions on Big Data,2018,4(2):177-190. [15]AGHASI A,JAMSHIDI K,BOHLOOLI A.A thermal-awareenergy-efficient virtual machine placement algorithm based on fuzzy controlled binary gravitational search algorithm(FC-BGSA)[J].Cluster Computing,2022,25(2):1015-1033. [16]TANG Q,GUPTA S K S,VARSAMOPOULOS G.Energy-Efficient Thermal-Aware Task Scheduling for Homogeneous High-Performance Computing Data Centers:A Cyber-Physical Approach[J].IEEE Transactions on Parallel and Distributed Systems,2008,19(11):1458-1472. [17]DONG T,XUE F,XIAO C,et al.Task scheduling based on deep reinforcement learning in a cloud manufacturing environment[J].Concurrency and Computation:Practice and Experience,2020,32(11):e5654. [18]LI F,HU B.Deepjs:Job scheduling based on deep reinforcement learning in cloud data center[C]//Proceedings of the 4th international conference on big data and computing.2019:48-53. [19]CHENG M,LI J,NAZARIAN S.DRL-cloud:Deep reinforcement learning-based resource provisioning and task scheduling for cloud service providers[C]//2018 23rd Asia and South Pacific Design Automation Conference(ASP-DAC).Jeju:IEEE,2018:129-134. [20]MAO H,SCHWARZKOPF M,VENKATAKRISHNAN S B,et al.Learning scheduling algorithms for data processing clusters[C]//Proceedings of the ACM Special Interest Group on Data Communication.New York,NY,USA:Association for Computing Machinery,2019:270-288. [21]SHI L,WEN L,LEI S,et al.Virtual machine consolidation algorithm based on decision tree and improved Q-learning by uniform distribution[J].Computer Science,2023,50(6):36-44. [22]LU H F,GU C H,LUO F,et al.Virtual machine placement strategy with energy consumption optimization under reinforcement learning[J].Computer Science,2019,46(9):291-297. [23]BELOGLAZOV A,ABAWAJY J,BUYYA R.Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing[J].Future Generation Computer Systems,2012,28(5):755-768. [24]MOORE J D,CHASE J S,RANGANATHAN P,et al.Making scheduling “Cool”:Temperature-aware workload placement in data centers[C]//USENIX annual technical conference,general track.2005:61-75. [25]LILLICRAP T P,HUNT J J,PRITZEL A,et al.Continuouscontrol with deep reinforcement learning[J].arXiv,2019. [26]PARK K,PAI V S.CoMon:a mostly-scalable monitoring system for PlanetLab[J].ACM SIGOPS Operating Systems Review,2006,40(1):65-74. [27]LU C,YE K,XU G,et al.Imbalance in the cloud:An analysis on Alibaba cluster trace[C]//2017 IEEE International Conference on Big Data(Big Data).2017:2884-2892. [28]WANG L,VON LASZEWSKI G,DAYAL J,et al.TowardsThermal Aware Workload Scheduling in a Data Center[C]//2009 10th International Symposium on Pervasive Systems,Algorithms,and Networks.2009:116-122. |
[1] | WANG Shuanqi, ZHAO Jianxin, LIU Chi, WU Wei, LIU Zhao. Fuzz Testing Method of Binary Code Based on Deep Reinforcement Learning [J]. Computer Science, 2024, 51(6A): 230800078-7. |
[2] | GAO Yuzhao, NIE Yiming. Survey of Multi-agent Deep Reinforcement Learning Based on Value Function Factorization [J]. Computer Science, 2024, 51(6A): 230300170-9. |
[3] | YANG Xiuwen, CUI Yunhe, QIAN Qing, GUO Chun, SHEN Guowei. COURIER:Edge Computing Task Scheduling and Offloading Method Based on Non-preemptivePriorities Queuing and Prioritized Experience Replay DRL [J]. Computer Science, 2024, 51(5): 293-305. |
[4] | WU Yanni, ZHOU Zhengyan, CHEN Hanze, ZHANG Dong. RBFRadar:Detecting Remarkable Burst Flows with Programmable Data Plane [J]. Computer Science, 2024, 51(4): 48-55. |
[5] | LI Junwei, LIU Quan, XU Yapeng. Option-Critic Algorithm Based on Mutual Information Optimization [J]. Computer Science, 2024, 51(2): 252-258. |
[6] | SHI Dianxi, PENG Yingxuan, YANG Huanhuan, OUYANG Qianying, ZHANG Yuhui, HAO Feng. DQN-based Multi-agent Motion Planning Method with Deep Reinforcement Learning [J]. Computer Science, 2024, 51(2): 268-277. |
[7] | ZHAO Xiaoyan, ZHAO Bin, ZHANG Junna, YUAN Peiyan. Study on Cache-oriented Dynamic Collaborative Task Migration Technology [J]. Computer Science, 2024, 51(2): 300-310. |
[8] | LIU Xingguang, ZHOU Li, ZHANG Xiaoying, CHEN Haitao, ZHAO Haitao, WEI Jibo. Edge Intelligent Sensing Based UAV Space Trajectory Planning Method [J]. Computer Science, 2023, 50(9): 311-317. |
[9] | LIN Xinyu, YAO Zewei, HU Shengxi, CHEN Zheyi, CHEN Xing. Task Offloading Algorithm Based on Federated Deep Reinforcement Learning for Internet of Vehicles [J]. Computer Science, 2023, 50(9): 347-356. |
[10] | JIN Tiancheng, DOU Liang, ZHANG Wei, XIAO Chunyun, LIU Feng, ZHOU Aimin. OJ Exercise Recommendation Model Based on Deep Reinforcement Learning and Program Analysis [J]. Computer Science, 2023, 50(8): 58-67. |
[11] | XIONG Liqin, CAO Lei, CHEN Xiliang, LAI Jun. Value Factorization Method Based on State Estimation [J]. Computer Science, 2023, 50(8): 202-208. |
[12] | LIU Chenwei, SUN Jian, LEI Bingbing, XU Tao, WU Zhuiwei. Task Scheduling Strategy for Energy Consumption Optimization of Cloud Data Center Based on Improved Particle Swarm Algorithm [J]. Computer Science, 2023, 50(7): 246-253. |
[13] | WANG Hanmo, ZHENG Shijie, XU Ruonan, GUO Bin, WU Lei. Self Reconfiguration Algorithm of Modular Robot Based on Swarm Agent Deep Reinforcement Learning [J]. Computer Science, 2023, 50(6): 266-273. |
[14] | ZHANG Qiyang, CHEN Xiliang, CAO Lei, LAI Jun, SHENG Lei. Survey on Knowledge Transfer Method in Deep Reinforcement Learning [J]. Computer Science, 2023, 50(5): 201-216. |
[15] | YU Ze, NING Nianwen, ZHENG Yanliu, LYU Yining, LIU Fuqiang, ZHOU Yi. Review of Intelligent Traffic Signal Control Strategies Driven by Deep Reinforcement Learning [J]. Computer Science, 2023, 50(4): 159-171. |
|