计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700167-6.doi: 10.11896/jsjkx.230700167

• 交叉&应用 • 上一篇    下一篇

基于SAMNV3的滚动轴承智能故障诊断方法

张兰昕, 向玲, 李显泽, 陈锦鹏   

  1. 华北电力大学机械工程系 河北 保定 071003
  • 发布日期:2024-06-06
  • 通讯作者: 向玲(ncepuxl@163.com)
  • 作者简介:(lanxin@ncepu.edu.cn)
  • 基金资助:
    国家自然科学基金(52075170,52175092)

Intelligent Fault Diagnosis Method for Rolling Bearing Based on SAMNV3

ZHANG Lanxin, XIANG Ling, LI Xianze, CHEN Jinpeng   

  1. Department of Mechanical Engineering,North China Electric Power University,Baoding,Hebei 071003,China
  • Published:2024-06-06
  • About author:ZHANG Lanxin,born in 1998,postgraduate.Her main research interests include machine learning,deep learning,and fault diagnosis and classification.
    XIANG Ling,born in 1971,Ph.D,professor,Ph.D supervisor.Her main research interests include vibration analysis and fault diagnosis,intelligent ope-ration and maintenance,dynamics research.
  • Supported by:
    National Natural Science Foundation of China(52075170,52175092).

摘要: 滚动轴承是机械设备的关键部件,为了对滚动轴承的故障类别进行有效识别,提出了一种融合自注意力机制(Self-Attention,SA)和轻量级网络MobileNetV3的SAMNV3滚动轴承智能故障诊断模型。利用该模型中自注意力机制对特征进行自适应加权的优点以及轻量级网络MobileNetV3体积较小的优点,通过直接将两个不同数据集的原始振动信号输入SAMNV3模型中,进行故障的特征提取与识别分类,从而实现端到端的滚动轴承智能故障诊断。在两种不同的数据集上进行验证,结果表明该模型具有较高的准确率和较低的计算复杂度,可以有效提高滚动轴承故障诊断的准确性和可靠性。

关键词: 滚动轴承, 智能故障诊断, 自注意力机制, 轻量级网络, MobileNetV3

Abstract: In order to accurately identify the fault categories of rolling bearings,which are essential components of mechanical equipment,this paper proposes a SAMNV3 intelligent fault diagnosis model for rolling bearings that integrates the self-attention(SA) mechanism and the lightweight network MobileNetV3.This model takes advantage of the adaptive weighting of the features by the self-attention mechanism and the small size of the lightweight network MobileNetV3 to achieve end-to-end rolling bearing intelligent fault diagnosis by directly inputting the original vibration signals from two different datasets into the SAMNV3 model for feature extraction and fault identification and classification.The results of the validation of the two different datasets show that the model has high accuracy and low computational complexity,which can effectively improve the accuracy and reliability of rolling bearing fault diagnosis.

Key words: Rolling bearing, Intelligent fault diagnosis, Self-attention mechanism, Lightweight network, MobileNetV3

中图分类号: 

  • TH165.3
[1]LIU R,YANG B,ZIO E,et al.Artificial intelligence for faultdiagnosis of rotating machinery:A review[J].Mechanical Systems and Signal Processing,2018,108:33-476.
[2]YOUNG T,HAZARIKA D,PORIA S,et al.Recent trends in deep learning based natural language processing[J].IEEE Computational Intelligence Magazine,2017,13(3):55-75.
[3]ZHAO R,YAN R Q,CHEN Z H,et al.Deep learning and itsap-plications to machine health monitoring[J].Mechanical Systems and Signal Processing,2019,115:213-237.
[4]HUANG X D,PANG X W.Review of Intelligent Device FaultDiagnosis Based on Deep Learning[J/OL].Computer Science:1-12.[2023-05-06].http://kns.cnki.net/kcms/detail/50.1075.TP.20230214.1354.022.html.
[5]JACOBS W,HOOREWEDER B V,BOONEN R,et al.The influence of external dynamic loads on the lifetime of rolling element bearings:Experimental analysis of the lubricant film and surface wear[J].Mechanical Systems and Signal Processing,2016,74(1):144-164.
[6]LEI Y,YANG B,JIANG X,et al.Applications of machine learning to machine fault diagnosis:A review and roadmap[J].Mechanical Systems and Signal Processing,2020,138:106587.
[7]DING Y,ZHUANG J,DING P,et al.Self-supervised pretraining via contrast learning for intelligent incipient fault detection of bearings[J].Reliability Engineering & System Safety,2022,218:108126.
[8]GAO Z,CECATI C,DING S,A survey of fault diagnosis and fault-tolerant techniques-part i:Fault diagnosis with model-based and signal-based approaches[J].IEEE Transactions on Industrial Electronics,2015(62):3757-3767.
[9]ZHAO Z B,LI T F,WU J Y,et al.Deep learning algorithms for rotating machinery intelligent diagnosis:An open source benchmark study[J].ISA Transactions,2020,107:224-255.
[10]LI Y,XU M,WEI Y,et al.A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree[J].Measurement,2016,77(Supplement C):80-94.
[11]ZHANG W,PENG G,LI C,et al.A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J].Sensors(Basel),2017,17(2):425.
[12]KIRANYAZ S,AVCI O,ABDELJABERO,et al.1D Convolutional Neural Networks and Applications:A Survey[J].arXiv:1905.03554,2019.
[13]WU C Z,JIANG P C,FENG F Z,et al.Faults diagnosis method for gearboxes based on a 1-D convolutional neural network[J].Journal of Vibration and Shock,2018,37(22):51-56.
[14]LIU Y,CHENG Q,SHI Y W,et al.Fault diagnosis of Rolling bearings based on attention module and 1D-CNN[J].Acta Solar Energy,2012,43(3):462-468.
[15]ZHOU X K,YU J B.Gearbox Fault Diagnosis Based on One-dimension Residual Convolutional Auto-encoder[J].Journal of Mechanical Engineering,2020,56(7):96-108.
[16]GUO M H,XU T X,LIU J J,et al.Attention mechanisms in computer vision:A survey[J].Computational Visual Media,2022,8(3):331-368.
[17]HOWARD A G,ZHU M,CHEN B,et al.MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications[J].arXiv:1704.04861,2017.
[18]GUO M H,XU T X,LIU J J,et al.Attention mechanisms in computer vision:A survey[J].Computational Visual Media,2022,8(3):331-368.
[19]QIAN S,NING C,HU Y.MobileNetV3 for Image Classification[C]//2021 IEEE 2nd International Conference on Big Data,Artificial Intelligence and Internet of Things Engineering(ICBAIE).Nanchang,China,2021:490-497.
[20]The case western reserve university bearing data center.Bearing data center fault test data[EB/OL].(1998-10-04).http://csegroups.case.edu/bearingdatacenter/home.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!