计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700172-5.doi: 10.11896/jsjkx.230700172

• 图像处理&多媒体技术 • 上一篇    下一篇

航拍绝缘子图像缺陷智能识别算法研究

戴永东1,2, 金扬1, 戴雨凡1, 付晶3, 王茂飞2, 刘玺2   

  1. 1 南京师范大学电气与自动化工程学院 南京 210023
    2 国网江苏省电力有限公司泰州供电分公司 江苏 泰州 225300
    3 中国电力科学研究院有限公司武汉分院 武汉 430070
  • 发布日期:2024-06-06
  • 通讯作者: 戴永东(daiyongdong1969@163.com)
  • 基金资助:
    国家自然科学基金(61601071);国网科技项目(5500-202018082A-0-0-00)

Study on Intelligent Defect Recognition Algorithm of Aerial Insulator Image

DAI Yongdong1,2, JIN Yang1, DAI Yufan1, FU Jing3, WANG Maofei2, LIU Xi2   

  1. 1 School of Electrical and Automation Engineering,Nanjing Normal University,Nanjing 210023,China
    2 State Grid Jiangsu Electric Power Co.,Ltd.Taizhou Power Supply Branch,Taizhou,Jiangsu 225300,China
    3 Wuhan Branch of China Electric Power Research Institute Co.,Ltd.Wuhan 430070,China
  • Published:2024-06-06
  • About author:DAI Yongdong,born in 1969,master,senior engineer.His main research interests include intelligent power operation inspection technology,energy Internet technology,etc.
  • Supported by:
    National Natural Science Foundation of China(61601071)and State Grid Science and Technology Program(5500-202018082A-0-0-00).

摘要: 由于电力线路绝缘子缺陷容易导致输电系统故障,因此,研究缺陷检测算法至关重要。传统的检测方法只能在有足够的前提知识、干扰低或在特定条件下才能准确定位绝缘子并检测出故障。为了能够在无人机航拍图像中自动定位绝缘子并检测出绝缘子缺陷,提出了一种全新的深度卷积神经网络(CNN)架构,该架构不仅能定位绝缘子而且还能检测绝缘子的缺陷。该架构分为两个模块,第一个模块为绝缘子定位,负责检测图像中的所有绝缘子;第二个模块为绝缘子缺陷检测,负责检测图像中所有绝缘子的缺陷。使用具有候选区域网络(Region Proposal Network,RPN)的CNN将绝缘子缺陷检测转换为两级对象检测问题。最后,在真实数据集上进行实验,所提方法缺陷检测精确率和召回率分别为91.2%和95.6%,满足了鲁棒性和准确性要求。

关键词: 航拍图像, 卷积神经网络(CNN), 缺陷检测, 绝缘子

Abstract: Since power line insulator defects can easily lead to transmission system failures,it is critical to study defect detection algorithms.Traditional detection methods can only accurately locate insulators and detect faults with sufficient prerequisite knowledge,low interference,or under specific conditions.For automatically locating insulators and detecting insulator defects in UAV aerial images,we propose a novel deep Convolutional Neural Network(CNN) architecture that not only locates insulators but also detects insulator defects.The architecture is divided into two modules,the first module for insulator localization is responsible for detecting all insulators in the image,and the second module for insulator defect detection is responsible for detecting all insulator defects in the image,using a CNN with a Region Proposal Network(RPN) to convert insulator defect detection into a two-level object detection problem.Finally,we perform experiments using real datasets with defect detection accuracy and recall rates of 91.2% and 95.6%,respectively,satisfying the robustness and accuracy requirements.

Key words: Aerial image, Convolutional neural network(CNN), Defect detection, Insulator

中图分类号: 

  • TM216
[1]ZHANG D Q,PANG Y H,ZHONG Y,et al.Composite insulator detection methodbased on unmanned aerial vehicle platform[J].Automation Technology and Application,2018,37(3):111-115,119.
[2]ZHANG H K,LI J Y,ZHANG B.Insulator foreign body detection method based on improved YOLO v3[J].China Electric Power,2020,53(2):49-55.
[3]WANG X Y,HAN B,LI D D,et al.Vision-based insulator defect detection method[J].Computer Engineering and Design,2019,40(12):3582-3587.
[4]LV X J,XIANG W,LIU Y P.Small target detection algorithm for UAV aerial images based on enhanced underlying features[J].Application Research of Computers,2021,38(5):1567-1571.
[5]YANG G,ZHANG N,JIN T,et al.Automatic detection of insulators in drone images[J].Science and Technology Innovation Herald,2018,15(24):45-49.
[6]LUO J J,LIU Z S,GONG X,et al.State evaluation method of line insulators based on UAV image and transfer learning[J].Power Engineering Technology,2019,38(5):30-36.
[7]HAO Y P,JIANG X L,YANG L,et al.Evaluation of naturalicing degree of operating insulators based on image segmentation[J].High Voltage Engineering,2017,43(1):285-292.
[8]CHEN W H,LI C L,YUAN B,et al.Effective location method for self-explosion defect of insulator[J].Computer Engineering and Design,2019,40(8):2346-2352.
[9]ZHAI Y J,WANG D,WU Y,et al.Step-by-step recognition method of aerial insulator images based on skeleton extraction[J].Journal of North China Electric Power University(Natural Science Edition),2015,42(3):105-110.
[10]ZHU S C,GAO Q W,LU Y X,et al.Insulator identification and location based on frequency tuning[J].Journal of Electrotechnical Technology,2018,33(23):5573-5580.
[11]GAO Q,WANG M S.Aerial photography insulator detection based on deep learning algorithm[J].Electrotechnical Techno-logy,2021(3):1-4.
[12]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:To-wards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149.
[13]LI Y T,GUO J I.A VGG-16 based faster RCNN model for PCB error inspection in industrial AOI applications[C]//2018 IEEE International Conference on Consumer Electronics-Taiwan(ICCE-TW).IEEE,2018:1-2.
[14]DAI J,LI Y,HE K,et al.R-fcn:Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems.2016:379-387
[15]CHEN T,LI M,LI Y,et al.Mxnet:A flexible and efficient machine learning library for heterogeneous distributed systems[J].arXiv:1512.01274,2015.
[16]DOLLÁR P,APPEL R,BELONGIE S,et al.Fast feature pyramids for object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(8):1532-1545.
[17]YIN X F,XIN Y L,LAN T.Improve Faster R-CNN’s target detection algrithm[J].Computer and Digital Engineering,2021,49(4):744-749.
[18]HE N H,WANG S J,LIU J F,et al.Research on detection method of insulator missing in aerial image based on deep lear-ning[J].Power System Protection and Control,2021,49(12):132-140.
[19]ZHAO Z,XU G,QI Y,et al.Multi-patch deep features for power line insulator status classification from aerial images[C]//2016 International Joint Conference on Neural Networks(IJCNN).IEEE,2016:3187-3194.
[20]LI S P,LIN Z X,GUO T L.Image super-resolution algorithm based on two-way generative confrontation network[J].Computer Applications and Software,2021,38(11):232-235,262.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!