计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700172-5.doi: 10.11896/jsjkx.230700172
戴永东1,2, 金扬1, 戴雨凡1, 付晶3, 王茂飞2, 刘玺2
DAI Yongdong1,2, JIN Yang1, DAI Yufan1, FU Jing3, WANG Maofei2, LIU Xi2
摘要: 由于电力线路绝缘子缺陷容易导致输电系统故障,因此,研究缺陷检测算法至关重要。传统的检测方法只能在有足够的前提知识、干扰低或在特定条件下才能准确定位绝缘子并检测出故障。为了能够在无人机航拍图像中自动定位绝缘子并检测出绝缘子缺陷,提出了一种全新的深度卷积神经网络(CNN)架构,该架构不仅能定位绝缘子而且还能检测绝缘子的缺陷。该架构分为两个模块,第一个模块为绝缘子定位,负责检测图像中的所有绝缘子;第二个模块为绝缘子缺陷检测,负责检测图像中所有绝缘子的缺陷。使用具有候选区域网络(Region Proposal Network,RPN)的CNN将绝缘子缺陷检测转换为两级对象检测问题。最后,在真实数据集上进行实验,所提方法缺陷检测精确率和召回率分别为91.2%和95.6%,满足了鲁棒性和准确性要求。
中图分类号:
[1]ZHANG D Q,PANG Y H,ZHONG Y,et al.Composite insulator detection methodbased on unmanned aerial vehicle platform[J].Automation Technology and Application,2018,37(3):111-115,119. [2]ZHANG H K,LI J Y,ZHANG B.Insulator foreign body detection method based on improved YOLO v3[J].China Electric Power,2020,53(2):49-55. [3]WANG X Y,HAN B,LI D D,et al.Vision-based insulator defect detection method[J].Computer Engineering and Design,2019,40(12):3582-3587. [4]LV X J,XIANG W,LIU Y P.Small target detection algorithm for UAV aerial images based on enhanced underlying features[J].Application Research of Computers,2021,38(5):1567-1571. [5]YANG G,ZHANG N,JIN T,et al.Automatic detection of insulators in drone images[J].Science and Technology Innovation Herald,2018,15(24):45-49. [6]LUO J J,LIU Z S,GONG X,et al.State evaluation method of line insulators based on UAV image and transfer learning[J].Power Engineering Technology,2019,38(5):30-36. [7]HAO Y P,JIANG X L,YANG L,et al.Evaluation of naturalicing degree of operating insulators based on image segmentation[J].High Voltage Engineering,2017,43(1):285-292. [8]CHEN W H,LI C L,YUAN B,et al.Effective location method for self-explosion defect of insulator[J].Computer Engineering and Design,2019,40(8):2346-2352. [9]ZHAI Y J,WANG D,WU Y,et al.Step-by-step recognition method of aerial insulator images based on skeleton extraction[J].Journal of North China Electric Power University(Natural Science Edition),2015,42(3):105-110. [10]ZHU S C,GAO Q W,LU Y X,et al.Insulator identification and location based on frequency tuning[J].Journal of Electrotechnical Technology,2018,33(23):5573-5580. [11]GAO Q,WANG M S.Aerial photography insulator detection based on deep learning algorithm[J].Electrotechnical Techno-logy,2021(3):1-4. [12]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:To-wards Real-Time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [13]LI Y T,GUO J I.A VGG-16 based faster RCNN model for PCB error inspection in industrial AOI applications[C]//2018 IEEE International Conference on Consumer Electronics-Taiwan(ICCE-TW).IEEE,2018:1-2. [14]DAI J,LI Y,HE K,et al.R-fcn:Object detection via region-based fully convolutional networks[C]//Advances in Neural Information Processing Systems.2016:379-387 [15]CHEN T,LI M,LI Y,et al.Mxnet:A flexible and efficient machine learning library for heterogeneous distributed systems[J].arXiv:1512.01274,2015. [16]DOLLÁR P,APPEL R,BELONGIE S,et al.Fast feature pyramids for object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2014,36(8):1532-1545. [17]YIN X F,XIN Y L,LAN T.Improve Faster R-CNN’s target detection algrithm[J].Computer and Digital Engineering,2021,49(4):744-749. [18]HE N H,WANG S J,LIU J F,et al.Research on detection method of insulator missing in aerial image based on deep lear-ning[J].Power System Protection and Control,2021,49(12):132-140. [19]ZHAO Z,XU G,QI Y,et al.Multi-patch deep features for power line insulator status classification from aerial images[C]//2016 International Joint Conference on Neural Networks(IJCNN).IEEE,2016:3187-3194. [20]LI S P,LIN Z X,GUO T L.Image super-resolution algorithm based on two-way generative confrontation network[J].Computer Applications and Software,2021,38(11):232-235,262. |
|