计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 379-386.doi: 10.11896/jsjkx.230700197
陈亮, 李志华
CHEN Liang, LI Zhihua
摘要: 针对如何从海量的网络流量数据中高效检测出物联网僵尸网络多阶段攻击行为,提出了一种基于多尺度混合残差网络(Multi-scale Hybrid Residual Network,MHRN)的物联网僵尸网络攻击检测(IoT Botnet Attack Detection based on MHRN,IBAD-MHRN)方法。首先,为了减少检测模型的计算参数,在数据预处理中提出基于方差阈值法的特征选择(Feature Selection based on Variance Threshold,FS-VT)算法;其次,采取一种将数据样本转换为图像样本的数据图像化处理策略,充分挖掘深度学习模型的潜能;然后,为了弥补传统僵尸网络检测模型表征能力有限的不足,提出了一种基于多尺度混合残差网络的物联网僵尸网络多阶段攻击检测模型,该模型通过混合方式融合了不同尺度深度提取的特征信息,再通过残差连接消除网络加深造成的网络退化影响;最后,集成上述模型和算法,进一步提出了一种物联网僵尸网络攻击检测方法IBAD-MHRN。实验结果表明,IBAD-MHRN方法的检测准确率和F1值均达到了99.8%,与表现较好的卷积神经网络方法相比在准确率和F1值上分别有0.14%和0.36%的提升,能够有效且高效地检测物联网僵尸网络多阶段攻击。
中图分类号:
[1]GSM ASSOCIATION.IoT Connections Forecast:The Rise ofEnterprise[OL].https://www.gsma.com/iot/resources/iot-connections-forecast-the-riseof-enterprise. [2]ROHIT M H,FAHIM S M,KHAN A H A.Mitigating and detecting ddos attack on iot environment[C]//2019 IEEE International Conference on Robotics,Automation,Artificial-intelligence and Internet-of-Things(RAAICON).IEEE,2019:5-8. [3]DANGE S,CHATTERJEE M.IoT botnet:The largest threat to the IoT network[M]//Data Communication and Networks:Proceedings of GUCON 2019.Singapore:Springer Singapore,2019:137-157. [4]WAZZAN M,ALGAZZAWI D,ALBESHRI A,et al.CrossDeep Learning Method for Effectively Detecting the Propagation of IoT Botnet[J].Sensors,2022,22(10):3895. [5]HUSSAIN F,ABBAS S G,PIRES I M,et al.A two-fold machine learning approach to prevent and detect IoT botnet attacks[J].IEEE Access,2021,9:163412-163430. [6]BORYS A,KAMRUZZAMAN A,THAKUR H N,et al.AnEvaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet[C]//2022 IEEE World AI IoT Congress(AIIoT).IEEE,2022:725-729. [7]ZHENG J,LI Q,GU G,et al.Realtime DDoS defense usingCOTS SDN switches via adaptive correlation analysis[J].IEEE Transactions on Information Forensics and Security,2018,13(7):1838-1853. [8]ZAINUDIN A,AHAKONYE L A C,AKTER R,et al.An efficient hybrid-dnn for ddos detection and classification in software-defined iiot networks[J].IEEE Internet of Things Journal,2023,10(10):8491-8504. [9]AYDIN H,ORMAN Z,AYDIN M A.A long short-term memory(LSTM)-based distributed denial of service(DDoS)detection and defense system design in public cloud network environment[J].Computers & Security,2022,118:102725. [10]DONG S,SAREM M.DDoS attack detection method based on improved KNN with the degree of DDoS attack in software-defined networks[J].IEEE Access,2019,8:5039-5048. [11]JIAN S J,LU Z G,DU D,et al.Review on network intrusion detection technology [J].Journal of Information Security,2020,5(4):96-122. [12]ALQAHTANI M,MATHKOUR H,BEN ISMAIL M M.IoT botnet attack detection based on optimized extreme gradient boosting and feature selection[J].Sensors,2020,20(21):6336. [13]ALSHAMKHANY M,ALSHAMKHANY W,MANSOUR M,et al.Botnet attack detection using machine learning[C]//2020 14th International Conference on Innovations in Information Technology(IIT).IEEE,2020:203-208. [14]WU Z J,XU Q,WANG J J,et al.Low-rate DDoS attack detection based on factorization machine in software defined network[J].IEEE Access,2020,8:17404-17418. [15]IDRISSI I,BOUKABOUS M,AZIZI M,et al.Toward a deep learning-based intrusion detection system for IoT against botnet attacks[J].IAES International Journal of Artificial Intelligence,2021,10(1):110-120. [16]RA W,UK S.Detection of IoT Botnet using Machine learning and Deep Learning Techniques[J/OL].https://doi.org/10.21203/rs.3.rs-2630988/v1. [17]TORRES P,CATANIA C,GARCIA S,et al.An analysis of recurrent neural networks for botnet detection behavior[C]//2016 IEEE Biennial Congress of Argentina(ARGENCON).IEEE,2016:1-6. [18]ALKAHTANI H,ALDHYANI T H H.Botnet attack detection by using CNN-LSTM model for Internet of Things applications[J].Security and Communication Networks,2021,2021:1-23. [19]CHAMOU D,TOUPAS P,KETZAKI E,et al.Intrusion detection system based on network traffic using deep neural networks[C]//2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks(CAMAD).IEEE,2019:1-6. [20]HE K,ZHANG X,REN S,et al.Identity mappings in deep residual networks[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,October 11-14,2016,Proceedings,Part IV 14.Springer International Publi-shing,2016:630-645. [21]POERNOMO A,KANG D K.Biased dropout and crossmapdropout:learning towards effective dropout regularization in convolutional neural network[J].Neural Networks,2018,104:60-67. [22]WANG X,YIN S,LI H,et al.A network intrusion detectionmethod based on deep multi-scale convolutional neural network[J].International Journal of Wireless Information Networks,2020,27:503-517. [23]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [24]MA W G,ZHANG Y D,GUO J.Abnormal traffic detectionmethod based on LSTM and Improved residual network optimization [J].Journal of Communications,2021,42(5):23-40. [25]LASHKARI A H,ZANG Y,OWHUO G,et al.CICFlowMeter[EB/OL].https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt,2017. [26]FIDA M A F A,AHMAD T,NTAHOBARI M.VarianceThreshold as Early Screening to Boruta Feature Selection for Intrusion Detection System[C]//2021 13th International Confe-rence on Information & Communication Technology and System(ICTS).IEEE,2021:46-50. [27]LUCKY G,JJUNJU F,MARSHALL A.A lightweight decision-tree algorithm for detecting DDoS flooding attacks[C]//2020 IEEE 20th International Conferenceon Software Quality,Reliability and Security Companion(QRS-C).IEEE,2020:382-389. [28]HUSSAIN F,ABBAS S G,HUSNAIN M,et al.IoT DoS andDDoS attack detection using ResNet[C]//2020 IEEE 23rd International Multitopic Conference(INMIC).IEEE,2020:1-6. [29]WANG X T,WANG X,SUN Z X.Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network[J].Computer Science,2022,49(8):314-322. [30]PETERSON J M,LEEVY J L,KHOSHGOFTAAR T M.A review and analysis of the bot-iot dataset[C]//2021 IEEE International Conference on Service-Oriented System Engineering(SOSE).IEEE,2021:20-27. |
|