计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 230900089-7.doi: 10.11896/jsjkx.230900089
叶瑞雯, 王宝会
YE Ruiwen, WANG Baohui
摘要: 下肢骨畸形一直是骨科医疗中一个常见且治疗难度较大的病症,通常需要医生基于病人下肢骨正侧位X光片进行畸形程度判断。其诊断与手术方案设计高度依赖医生的专业程度与经验水平,是当前医疗领域非常重要的一个难题。为了降低医生诊断难度,需要给医生提供更加直观准确的下肢骨畸形模型展示。文中将人工智能深度学习技术应用到医疗影像处理与三维重建中,提出PSSobel-X2CTGAN模型以实现基于二维X光影片到三维CT图像的重建。主要研究内容包括:1)调研梳理CT影像归一化、裁剪缩放和DRR生成的数据预处理流程,使其能更好地应用于三维重建模型的训练和预测;2)将生成对抗原理运用于模型训练中,通过对生成器上采样过程的优化使得生成的三维模型更加接近真实情况;3)设计合理的损失函数,在基本的重建损失和投影损失基础上,引入sobel loss使得最终图片的边缘更加清晰,更适用于高精度的三维骨模型重建。在开源的盆骨和膝关节数据上进行实验,结果表明所提模型在各项评价指标上都优于原始模型,且从可视化的图片结果来看,该模型所提能取得较为满意的效果,对下肢畸形诊断具有实用价值。
中图分类号:
[1]SHEPP L A,VARDI Y.Maximum Likelihood Reconstructionfor Emission Tomography[J].IEEE Transactions on Medical Imaging,1983,1:113-122. [2]LUSTIG M,DONOHO D L,PAULY J M.Sparse MRI:The application of compressed sensing for rapid MR imaging[J].Magnetic Resonance in Medicine,2007,58. [3]HERMAN G T.Fundamentals of Computerized Tomography:Image Reconstruction from Projections[M].Springer Science & Business Media,2009. [4]LAMECKER H,WENCKEBACH T H,HEGE H.Atlas-based 3D-Shape Reconstruction from X-Ray Images[C]//18th International Conference on Pattern Recognition(ICPR'06).2006:371-374. [5]SERRADELL E,ROMERO A,LETA R,et al.Simultaneouscorrespondence and non-rigid 3D reconstruction of the coronary tree from single X-ray images[J].International Conference on Computer Vision,2011:850-857. [6]EIGEN D,PUHRSCH C,FERGUS R.Depth Map Prediction from a Single Image using a Multi-Scale Deep Network[C]//NIPS.2014. [7]HENZLER P,RASCHE V,ROPINSKI T,et al.Single-imageTomography:3D Volumes from 2D X-Rays[J].arXiv:1710.04867,2017. [8]YING X,GUO H,MA K.X2CT-GAN:Reconstructing CTFrom Biplanar X-Rays With Generative Adversarial Networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR 2019).2019:10611-10620. [9]WÜRFL T,GHESU F C,CHRISTLEIN V,et al.Deep Learning Computed Tomography[J].International Conference on Medical Image Computing and Computer-Assisted Intervention.2016:432-440. [10]MAGNOR M A,KINDLMANN G L,DURIC N,et al.Con-strained inverse volume rendering for planetary nebulae[C]//IEEE Visualization 2024.IEEE,2004:83-90. [11]LEDIG C,THEIS L,HUSZÁR F,et al.Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2017).2016:105-114. [12]SHI W,CABALLERO J,HUSZÁR F,et al.Real-Time SingleImage and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2016).2016:1874-1883. [13]PHILLIP I,ZHU J,ZHOU T,et al.Image-to-Image Translation with Conditional Adversarial Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition(2017 CVPR).2016:5967-5976. [14]WANG Y,ZHANG Z,HAO W,et al.Multi-Domain Image-to-Image Translation via a Unified Circular Framework[J].IEEE Transactions on Image Processing:a Publication of the IEEE Signal Processing Society,2020,30:670-684. [15]WANG J,SHU H,XIA W,et al.Coarse-to-Fine Searching for Efficient Generative Adversarial Networks[J].arXiv:2104.09223,2021. [16]CHO J,SHIMODA W,YANAI K.Mask-based Style-Controlled Image Synthesis Using a Mask Style Encoder[C]//25th International Conference on Pattern Recognition(ICPR 2020).2021:5176-5183. [17]ZHANG H,PU Y,NIE R,et al.Multi-modal image synthesis combining content-style adaptive normalization and attentive normalization[J].Computer Graph,2021,98:48-57. [18]MAO X,LI Q,XIE H,et al.Least Squares Generative Adversarial Networks[C]//IEEE International Conference on Computer Vision(ICCV 2017).2016:2813-2821. [19]YU B,ZHOU L,WANG L,et al.Ea-GANs:Edge-Aware Generative Adversarial Networks for Cross-Modality MR Image Synthesis[J].IEEE Transactions on Medical Imaging,2019,8:1750-1762. [20]BAHNER M L,DEBUS J,ZABEL A,et al.Digitally recon-structed radiographs from abdominal CT scans as a new tool for radiotherapy planning.Investigative radiology,1999,34(10):643-647. [21]SHACKLEFORD J A,KANDASAMY N,SHARP G C.Plastimatch-An Open-Source Software for Radiotherapy Imaging[M].2014:107-114. [22]LIU P,HAN H,DU Y,et al.Deep learning to segment pelvic bones:large-scale CT datasets and baseline models[J].International Journal of Computer Assisted Radiology and Surgery,2020,16:749-756. [23]HEIMANN T,MORRISON B,STYNER M A,et al.Segmenta-tion of Knee Images:A Grand Challenge[C]//MICCAI Workshop on Medical Image Analysis for the Clinic.2010:207-214. [24]KYUNG D,JO K,CHOO J,et al.Perspective Projection-Based 3D CT Reconstruction from Biplanar X-rays[J].arXiv:2303.05297,2023. [25]VAN HOUTTE J,AUDENAERT E A,ZHENG G,et al.Deep learning-based 2D/3D registration of an atlas to biplanar X-ray images[J].International Journal of Computer Assisted Radiology and Surgery,2022,17:1333-1342. [26]WANG Y,XIA Q.TPG-rayGAN:CT reconstruction based ontransformer and generative adversarial networks[C]//Confe-rence on Intelligent Computing and Human-Computer Interaction,2023. [27]ZHANG C,DAI J,WANG T,et al.XTransCT:Ultra-Fast Vo-lumetric CT Reconstruction using Two Orthogonal X-Ray Projections via a Transformer Network[J].arXiv:2305.19621,2023. [28]ZHU J Y,PARK T,ISOLA P,et al.Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2223-2232. |
|