计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 73-80.doi: 10.11896/jsjkx.231000198

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于对比共识图学习的多视图属性图聚类算法

刘鹏仪1, 胡节1,2,3,4, 王红军1,2,3,4, 彭博1,2,3,4   

  1. 1 西南交通大学计算机与人工智能学院 成都 611756
    2 教育部城市智能交通工程研究中心 成都 611756
    3 西南交通大学综合交通大数据应用技术国家工程实验室 成都 611756
    4 西南交通大学四川省制造业产业链协同与信息支撑技术重点实验室 成都 611756
  • 收稿日期:2023-10-28 修回日期:2024-03-05 出版日期:2024-11-15 发布日期:2024-11-06
  • 通讯作者: 胡节(jiehu@swjtu.edu.cn)
  • 作者简介:(963377522@qq.com)
  • 基金资助:
    国家自然科学基金(62276216);四川省重点研发项目(2023YFG0354);2023年西南交通大学国际学生教育管理研究项目(23LXSGL01)

Multi-view Attributed Graph Clustering Based on Contrast Consensus Graph Learning

LIU Pengyi1, HU Jie1,2,3,4, WANG Hongjun1,2,3,4, PENG Bo1,2,3,4   

  1. 1 School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China
    2 Engineering Research Center of Sustainable Urban Intelligent Transportation,Ministry of Education,Chengdu 611756,China
    3 National Engineering Laboratory of Integrated Transportation Big Data Application Technology,Chengdu 611756,China
    4 Manufacturing Industry Chains Collaboration and Information Support Technology Key Laboratory of Sichuan Province,Southwest Jiaotong University,Chengdu 611756,China
  • Received:2023-10-28 Revised:2024-03-05 Online:2024-11-15 Published:2024-11-06
  • About author:LIU Pengyi,born in 1999,postgraduate,is a member of CCF(No.T3986G).His main research interests include attribute graph clustering and graph neural network.
    HU Jie,born in 1978,Ph.D,associate professor,master supervisor,is a member of CCF(No.D5539M).Her main research interests include artificial intelligence,machine learning and data mining.
  • Supported by:
    National Natural Science Foundation of China(62276216),Sichuan Science and Technology Program(2023YFG0354) and International Student Education Management Research Project of Southwest Jiaotong University(23LXSGL01).

摘要: 多视图属性图聚类可以将具有多个视图的图数据的节点划分到不同的簇中,近年来受到了研究者的广泛关注。目前,已有许多基于图神经网络的多视图属性图聚类方法被提出并取得了较好的聚类性能。然而,由于图神经网络难以处理数据收集过程中出现的图噪声,因此基于图神经网络的多视图属性图方法很难进一步提高聚类性能。为此,提出了一种新的基于对比共识图学习的多视图属性图聚类算法,以降低噪声对聚类的影响从而得到更好的结果。该算法包括4个步骤:首先,使用图滤波消除图上的噪声,并同时保留完整的图结构;然后,选择少量节点来学习共识图,以降低计算复杂度;随后,使用图对比正则化来帮助学习共识图;最后,利用谱聚类获得聚类结果。大量的实验结果表明,与当前最先进的方法相比,所提算法能够很好地减少图数据中噪声对聚类的影响,并以较高的执行效率取得良好的聚类结果。

关键词: 多视图学习, 属性图数据, 图聚类, 对比共识图学习, 图过滤

Abstract: Multi-view attribute graph clustering can divide nodes of graph data with multiple views into different clusters,which has attracted widespread attention from researchers in recent years.At present,many multi-view attribute graph clustering me-thods based on graph neural networks have been proposed and achieved considerable clustering performance.However,since graph neural networks are difficult to deal with graph noise that occurs during data collection,it is difficult for multi-viewattri-bute graph methods based on graph neural networks to further improve clustering performance.Therefore,a new multi-view attribute graph clustering method based on contrastive consensus graph learning is proposed to reduce the impact of noise on clustering and obtain better results.This method consists of four steps.First,graph filtering is used to remove noise on the graph while retaining the intact graph structure.Then,a small number of nodes are selected to learn the consensus graph to reduce computational complexity.Subsequently,graph contrast regularization is used to help learn the consensus graph.Finally,spectral clustering is used to obtain clustering results.A large number of experimental results show that compared with the current state-of-the-art methods,the proposed method can well reduce the impact of noise in graph data on clustering and achieve considerable clustering results with fast execution efficiency.

Key words: Multi-view learning, Attributed graph data, Graph clustering, Contrast consensus graph learning, Graph filter

中图分类号: 

  • TP391
[1] LIN Z P,ZHAO K.Graph Filter-based Multi-view AttributedGraph Clustering[C]//Proceedings of the International Joint Conference on Artificial Intelligence.2021:2723-2729.
[2] ZHANG Y R,CHEN E H,JIN B B,et al.Clustering based behavior sampling with long sequential data for CTR prediction[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:2195-2200.
[3] FAN S H,WANG X,SHI C,et al.One multi graph autoenco-der for multi-view graph clustering[C]//Proceedings of the Web Conference 2020.2020:3070-3076.
[4] CHENG J F,WANG Q Q,TAO Z Q,et al.Multi-view attributegraph convolution networks for clustering[C]//Proceedings of the twenty-ninth International Conference on International Joint Conference on Artificial Intelligence.2021:2973-2979.
[5] PAN E,ZHAO K.Multi-view contrastive graph clustering[J].Advances in Neural Information Processing Systems,2021,34:2148-2159.
[6] CHEN M S,LIN J Q,LI X L,et al.Representation learning in multi-view clustering:A literature review[J].Data Science and Engineering,2022,7(3):225-241.
[7] CHEN Y Y,XIAO X L,HUA Z Y,et al.Adaptive transitionprobability matrix learning for multiview spectral clustering[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(9):4712-4726.
[8] ZHANG P,LIU X W,XIONG J,et al.Consensus one-stepmulti-view subspace clustering[J].IEEE Transactions on Knowledge and Data Engineering,2020,34(10):4676-4689.
[9] WANG S W,LIU X W,ZHU X Z,et al.Fast parameter-freemulti-view subspace clustering with consensus anchor guidance[J].IEEE Transactions on Image Processing,2021,31:556-568.
[10] LIU S Y,WANG S W,ZHANG P,et al.Efficient one-passmulti-view subspace clustering with consensus anchors[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:7576-7584.
[11] CHEN Y Y,WANG S Q,PENG C,et al.Generalized nonconvex low-rank tensor approximation for multi-view subspace clustering[J].IEEE Transactions on Image Processing,2021,30:4022-4035.
[12] GAO Q X,XIA W,WAN Z Z,et al.Tensor-SVD based graph learning for multi-view subspace clustering[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:3930-3937.
[13] WANG X,JI H Y,SHI C,et al.Heterogeneous graph attention network[C]//Proceedings of the World Wide Web Conference.2019:2022-2032.
[14] LIU L,CHEN P,LUO G C,et al.Scalable multi-view clustering with graph filtering[J].Neural Computing and Applications,2022,34(19):16213-16221.
[15] XU K Y L,HU W H,LESKOVEC J,et al.How powerful are graph neural networks?[J].arXiv:1810.00826,2018.
[16] COUTINO M,ELVIN I,AND GEERT L.Advances in distributed graph filtering[J].IEEE Transactions on Signal Processing,2019,67(9):2320-2333.
[17] ISUFI E,FERNANDO G,DAVID I,et al.Graph filters for signal processing and machine learning on graphs[J].arXiv:2211.08854,2022.
[18] DONG X W,THANOU D,TONI L,et al.Graph signal proces-sing for machine learning:A review and new perspectives[J].IEEE Signal Processing Magazine,2020,37(6):117-127.
[19] ZHANG X T,LIU H,LI Q M,et al.Attributed graph clustering via adaptive graph convolution[J].arXiv:1906.01210,2019.
[20] WANG B,CHEN Y,SHENG J F,et al.Attributed Graph Embedding Based on Attention with Cluster[J].Mathematics,2022,10(23):4563.
[21] WANG J,LI W X,HOU C Y,et al.HCL:Improving GraphRepresentation with Hierarchical Contrastive Learning[C]//Proceedings of the International Semantic Web Conference.Springer,2022:108-124.
[22] JIN M,ZHENG Y Z,LI Y F,et al.Multi-scale contrastive siamese networks for self-supervised graph representation learning[J].arXiv:2105.05682,2021.
[23] HASSANI K,AMIR H K.Contrastive multi-view representa-tion learning on graphs[C]//Proceedings of the International Conference on Machine Learning.PMLR,2020:4116-4126.
[24] MA Z R,KANG Z,LUO G C,et al.Towards clustering-friendly representations:Subspace clustering via graph filtering[C]//Proceedings of the 28th ACM International Conference onMulti-media.2020:3081-3089.
[25] KANG Z,LIN Z P,ZHU X F,et al.Structured graph learning for scalable subspace clustering:From single view to multiview[J].IEEE Transactions on Cybernetics,2021,52(9):8976-8986.
[26] KANG Z,PAN H Q,CH HOI S,et al.Robust graph learning from noisy data[J].IEEE Transactions on Cybernetics,2019,50(5):1833-1843.
[27] KANG Z,ZHOU W T,ZHAO Z T,et al.Large-scale multi-view subspace clustering in linear time[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:4412-4419.
[28] KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014.
[29] ZHANG H M,QIU L W,YI L L,et al.Scalable multiplex network embedding[C]//Proceedings of the International Joint Conference on Artificial Intelligence.2018:3082-3088.
[30] LIU W Y,CHEN P Y,YEUNG S L,et al.Principled multilayer network embedding[C]//Proceedings of the 2017 IEEE International Conference on Data Mining Workshops(ICDMW).IEEE,2017:134-141.
[31] XIA R K,PAN Y,DU L,et al.Robust multi-view spectral clus-tering via low-rank and sparse decomposition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014.
[32] NIE F P,LI J,LI X L.Self-weighted Multiview Clustering with Multiple Graphs[C]//Proceedings of the International Joint Conference on Artificial Intelligence.2017:2564-2570.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!