计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231100047-9.doi: 10.11896/jsjkx.231100047
陈毓哲, 曹琼, 黄贤英, 邹世豪
CHEN Yuzhe, CAO Qiong, HUANG Xianying, ZOU Shihao
摘要: 序列推荐根据用户和项目的交互序列预测用户未来的偏好,然而现有的方法忽略了在现实场景中用户的多行为交互(如浏览、收藏、加入购物车)。其次,用户的偏好有着时序依赖性,同时也受到属性信息的影响。最后,在多行为序列推荐场景中用户的多行为交互存在复杂依赖关系。因此我们提出了一种融合属性权重和时序元知识的多行为序列推荐模型(MB-ATMK)。首先加入用户的多行为交互数据,并基于用户交互的时间戳设计了时序感知编码模块,通过时序感知注意力捕获了用户的动态偏好。其次引入了用户端和项目端丰富的属性信息,设计了属性权重增强的元知识图神经网络。使用元知识提炼了用户的多偏好模式,并基于图神经网络设计了属性权重注意力机制,增强了模型对用户细粒度偏好的捕获。最后提出了包含多行为权重生成模块和偏好迁移网络的元知识预测层,通过生成定制的元知识捕获了用户的跨行为依赖。在两个数据集上进行的大量实验验证了所提模型的有效性和优越性。
中图分类号:
[1]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [2]WANG X,HE X.Neural graph collaborative filtering[C]//Proceedings of the 42nd international ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [3]SUN F,LIU J,WU J,et al.Bert4rec:Sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.2019. [4]WU S,TANG Y,ZHU Y,et al.Session-based recommendationwith graph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33(1):346-353. [5]ZHOU H,TAN Q,HUANG X,et al.Temporal augmentedgraph neural networks for session-based recommendations[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:1798-1802. [6]TANG J,WANG K.Personalized top-n sequential recommendation via convolutional sequence embedding[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.2018:565-573. [7]MA C,MA L,ZHANG Y,et al.Memory augmented graph neural networks for sequential recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020,34(4):5045-5052. [8]TAN Q,ZHANG J,YAO J,et al.Sparse-interest network for sequential recommendation[C]//Proceedings of the 14th ACM International Conference on Web Search and Data Mining.2021:598-606. [9]CHANG J,GAO C,ZHENG Y,et al.Sequential recommendation with graph neural networks[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:378-387. [10]ZHANG M,WU S,YU X,et al.Dynamic graph neural networks for sequential recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2022,35(5):4741-4753. [11]WANG W,ZHANG W,LIU S,et al.Beyond clicks:Modeling multi-relational item graph for session-based target behavior prediction[C]//Proceedings of the Web Conference 2020:3056-3062. [12]YANG Y,HUANG C,XIA L,et al.Multi-behavior hypergraph-enhanced transformer for sequential recommendation[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2022:2263-2274. [13]ZHOU H,TAN Q,HUANG X,et al.Temporal augmentedgraph neural networks for session-based recommendations[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:1798-1802. [14]JIANG N,ZENG Z,WEN J,et al.Incorporating multi-interestinto recommendation with graph convolution networks[J].International Journal of Intelligent Systems,2022,37(11):9192-9212. [15]ZHAO Z,CHENG Z,HONG L,et al.Improving user topic interest profiles by behavior factorization[C]//Proceedings of the 24th International Conference on World Wide Web.2015:1406-1416. [16]CHEN C,ZHANG M,ZHANG Y,et al.Efficient heterogeneous collaborative filtering without negative sampling for recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:19-26. [17]CHEN C,MA W,ZHANG M,et al.Graph heterogeneous multi-relational recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:3958-3966. [18]JAMAL M A,QI G J.Task agnostic meta-learning for few-shot learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:11719-11727. [19]JIN B,CHENG K,QU Y,et al.Fast sparse connectivity net-work adaption via meta-learning[C]//2020 IEEE International Conference on Data Mining(ICDM).IEEE,2020:232-241. [20]SANTORO A,BARTUNOV S,BOTVINICKM,et al.Meta-learning with memory-augmented neural networks[C]//International Confe-rence on Machine Learning.PMLR,2016:1842-1850. [21]FINN C,ABBEEL P,LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[C]//International Confe-rence on Machine Learning.PMLR,2017:1126-1135. [22]CHEN M,ZHANG W,ZHANG W,et al.Meta relational lear-ning for few-shot link prediction in knowledge graphs[J].arXiv:1909.01515,2019. [23]NIU G,LI Y,TANG C,et al.Relational learning with gated and attentive neighbor aggregator for few-shot knowledge graph completion[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:213-222. [24]LU Y,JIANG X,FANG Y,et al.Learning to pre-train graph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:4276-4284. [25]WEN Z,FANG Y,LIU Z.Meta-inductive node classificationacross graphs[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:1219-1228. [26]ACHILLE A,LAM M,TEWARI R,et al.Task2vec:Task Embedding for meta-learning[C]//Proceedings of the IEEE/CVF International conference on Computer Vision. 2019:6430-6439. [27]XIONG W,YU M,CHANG S,et al.One-shot relational lear-ning for knowledge graphs[J].arXiv:1808.09040,2018. [28]XIA L,HUANG C,XU Y,et al.Knowledge-enhanced hierarchical graph transformer network for multi-behavior recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:4486-4493. [29]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648. [30]LIU F,CHENG Z,ZHU L,et al.Interest-aware message-pas-sing gcn for recommendation[C]//Proceedings of the Web Conference 2021.2021:1296-1305. [31]WANG X,HE X,WANG M,et al.Neural graph collaborativefiltering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [32]JIN B,GAO C,HE X,et al.Multi-behavior recommendationwith graph convolutional networks[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:659-668. [33]YANG Y,HUANG C,XIAL,et al.Multi-behavior hypergraph-enhanced transformer for sequential recommendation[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2022:2263-2274. [34]KANG W C,MCAULEY J.Self-attentive sequential recommen-dation[C]//2018 IEEE International Conference on Data Mining(ICDM).IEEE,2018:197-206. [35]WANG M,REN P,MEI L,et al.A collaborative session-based recommendation approach with parallel memory modules[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:345-354. [36]WANG X,HE X,CAO Y,et al.Kgat:Knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.2019:950-958. [37]PENG Z,LIU H,JIA Y,et al.Attention-driven graph clustering network[C]//Proceedings of the 29th ACM International Conference on Multimedia.2021:935-943. |
|