计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231100119-8.doi: 10.11896/jsjkx.231100119
陈海燕, 毛利宏
CHEN Haiyan, MAO Lihong
摘要: 无人机航拍图像背景复杂、目标密集且小目标占比大,加大了目标检测的难度。基于深度学习的目标检测模型计算复杂度高,难以部署在无人机搭载的嵌入式设备上。针对此问题,提出了一种改进的基于YOLOv5s的轻量化航拍图像目标检测模型。首先将YOLOv5s主干网络的C3模块BottleNeck替换为轻量级的ShuffleNetv2网络,来降低模型的参数量和计算复杂度;其次在ShuffleNetv2网络中引入跨层信息交叉融合、SE通道注意力机制以及残差连接,来缓解卷积操作导致的特征通道数减少、网络中间层特征图的信息利用不充分问题;再次在YOLOv5s多尺度特征融合网络中引入SE通道注意力机制,来提高网络对关键特征的捕捉和提取能力;最后对改进的目标检测模型采用通道剪枝的方法使模型进一步轻量化。实验结果表明:在NWPU VHR-10数据集上,改进后的模型与YOLOv5s模型相比,目标检测的准确率和平均精度均值分别提升了3.5%,1.9%,模型的参数量和计算量降低了76%,48.7%,模型大小压缩了73.8%,检测速度提升了48%。
中图分类号:
[1]JUNOS M H,KHAIRUDDIN A S M,DAHARI M.Automated object detection on aerial images for limited capacity embedded device using a lightweight CNN model [J].Alexandria Engineering Journal,2022,61(8):6023-6041. [2]LIU S,D LIU Y H,SUN Y M,et al.Small object detection in UAV aerial images based on inverted residual attention[J].Journal of Beijing University of Aeronautics and Astronautics,2023,49(3):514-524. [3]DENG L,BI L,LI H,et al.Lightweight aerial image object detection algorithm based on improved YOLOv5s [J].Scientific Reports,2023,13(1):7817. [4]CORTES C,VAPNIK V N.Support Vector Networks [J].Machine Learning,1995,20(3):273-297. [5]STATISTICS L B,BREIMAN L.Random Forests [J].Machine Learning,2001,45(1):5-32. [6]LOWE D G.Distinctive Image Features from Scale-InvariantKeypoints [J].International Journal of Computer Vision,2004,60(2):91-110. [7]GUO L,WANG Q L,XUE W,et al.A Small Object Detection Algorithm Based on Improved YOLOv5[J].Journal of University of Electronic Science and Technology of China,2022,51(2):251-258. [8]LIU P,LI K,ZHOU X,et al.RFP-based Faster R-CNN in Aeri-al Image Detection [C]//Proceedings of the 2020 International Conference on Artificial Intelligence and Computer Engineering(ICAICE).IEEE,2020:325-329. [9]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards Real-Time Object Detection with Region Proposal Networks [J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [10]HUANG Y C,LI L H,MA J J,et al.Research on aerial photography target detection algorithm based on improved SSD algorithm[J].Journal of Telemetry,Tracking and Command,2022,43(3):79-85. [11]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector [C]// proceedings of the Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,Part I 14.Springer,2016:21-37. [12]FENG Z Q,XIE Z J,BAO Z W,et al.Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J].Acta Aeronautica et Astronautica Sinica,2023,44(7):251-265. [13]XIE C H,WU J M,XU H Y.Small Object Detection Algorithm Based on Improved YOLOv5 in UAV Image[J].Computer Engineering and Applications,2023,59(9):198-206. [14]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications [J].arXiv:1704.04861,2017. [15]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:In-verted residuals and linear bottlenecks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4510-4520. [16]HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3 [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1314-1324. [17]ZHANG X,ZHOU X,LIN M,et al.Shufflenet:An extremelyefficient convolutional neural network for mobile devices [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6848-6856. [18]MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:Practical guidelines for efficient cnn architecture design [C]// Proceedings of the European Conference on Computer Vision(ECCV).2018:116-131. [19]HAN K,WANG Y,TIAN Q,et al.Ghostnet:More featuresfrom cheap operations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1580-1589. [20]YE L.AugShuffleNet:Communicate More,Compute Less [J].arXiv:2203.06589,2022. [21]ZHANG L,CAI J.Target detection system based on lightweight Yolov5 algorithm[J].Computer Technology and Development,2022,32(11):134-139. [22]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [23]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8759-8768. |
|