计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 379-388.doi: 10.11896/jsjkx.231200034
王梓行1, 杨敏1, 魏子重2
WANG Zihang1, YANG Min1, WEI Zichong2
摘要: 联邦学习(Federated Learning,FL)是一种先进的隐私保护机器学习技术,其通过多方协作,在无需集中聚合原始数据的情况下,交换模型参数以训练共享模型。尽管在FL中参与方不需要显式地共享数据,但许多研究表明,其仍然面临多种隐私推理攻击,从而导致隐私信息泄露。为应对这一问题,学术界提出了多种解决方案。其中,一种严格保障隐私的方法是将本地化差分隐私(Local Differential Privacy,LDP)技术应用于联邦学习。该技术在参与方上传模型参数前对其添加随机噪声,能有效地抵御恶意攻击者的推理攻击。然而,LDP引入的噪声会造成模型性能下降。同时,最新研究指出,这种性能下降与LDP在客户端之间引入了额外的异构性有关。针对LDP使得FL性能下降的问题,提出了差分隐私保护下基于参数解耦的联邦学习方案(PD-LDPFL):除了服务器下发的基础模型外,每个客户端在本地还额外学习了个性化输入和输出模型。该方案在客户端传输时仅上传添加噪声后的基础模型的参数,而个性化模型的参数被保留在本地,自适应改变客户端本地数据的输入和输出分布,缓解LDP引入的额外异构性以减少精度损失。此外,研究发现,即使在采用较高的隐私预算的情况下,该方案也能天然地抵御一些基于梯度的隐私推理攻击,如深度梯度泄露等攻击方法。在MNIST,FMNIST和CIFAR-10这3个常用数据集上进行了实验,结果表明:相比传统的差分隐私联邦学习方法,该方案不仅可以获得更好的性能,而且还提供了额外的安全性。
中图分类号:
[1] TANG P,XU H M,MA C.ProtoTransfer:Cross-Modal Prototype Transfer for Point Cloud Segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:3337-3347. [2] ZHAN F,YU Y,WU R,et al.Marginal contrastive correspondence for guided image generation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10663-10672. [3] LEE P,BUBECK S,PETRO J.Benefits,limits,and risks ofGPT-4 as an AI chatbot for medicine[J].New England Journal of Medicine,2023,388(13):1233-1239. [4] MCMAHAN B,MOORE E,RAMAGE D,et al.Communica-tion-efficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics.PMLR,2017:1273-1282. [5] PHONG L T,AONO Y,HATASHI T,et al.Privacy-preserving deep learning:Revisited and enhanced[C]//Applications and Techniques in Information Security:8th International Confe-rence.2017:100-110. [6] WEI W,LIU L,LOPER M,et al.A framework for evaluatinggradient leakage attacks in federated learning[J].ESORICS 2020:25th European Symposium on Research in Computer Security,2020,12308:545-566. [7] AONO Y,HAYASHI T,WANG L,et al.Privacy-preservingdeep learning via additively homomorphic encryption[J].IEEE Transactions on Information Forensics and Security,2017,13(5):1333-1345. [8] YIN H,MALLYA A,VAHDAT A,et al.See through gra-dients:Image batch recovery via gradinversion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:16337-16346. [9] GEIPING J,BAUERMEISTER H,DRÖGE H,et al.Inverting gradients-how easy is it to break privacy in federated learning?[J].Advances in Neural Information Processing Systems,2020,33:16937-16947. [10] MOTHUKURI V,PARIZI R M,POURIYEH S,et al.A surveyon security and privacy of federated learning[J].Future Generation Computer Systems,2021,115:619-640. [11] DWORK C,MCSHERRY F,NISSIM K,et al.Calibrating noise to sensitivity in private data analysis[C]//Thirty-Ninth ACM Symposium on Theory of Computing ACM.2007:75-84. [12] DWORK C,ROTH A.The algorithmic foundations of differential privacy[J].Foundations and Trends in Theoretical Compu-ter Science,2014,9(3/4):211-407. [13] KASIVISWANATHAN S P,LEE H K,NISSIM K,et al.What can we learn privately?[J].SIAM Journal on Computing,2011,40(3):793-826. [14] KIM M,JAIN A K,LIU X.Adaface:Quality adaptive margin for face recognition[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2022:18750-18759. [15] XU J,HE X,LI H.Deep learning for matching in search and recommendation[C]//The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval.2018:1365-1368. [16] WANG T,HU X,LIU Z,et al.Sparse2Dense:Learning to densify 3d features for 3d object detection[J].Advances in Neural Information Processing Systems,2022,35:38533-38545. [17] YE M,FANG X,DU B,et al.Heterogeneous federated lear-ning:State-of-the-art and research challenges[J].ACM Computing Surveys,2023,56(3):1-44. [18] FU J,CHEN Z,HAN X.Adap DP-FL:Differentially PrivateFederated Learning with Adaptive Noise[C]//2022 IEEE International Conference on Trust,Security and Privacy in Computing and Communications(TrustCom).IEEE,2022:656-663. [19] HUANG X,DING Y,JIANG Z L,et al.DP-FL:a novel diffe-rentially private federated learning framework for the unbalanced data[J].World Wide Web,2020,23:2529-2545. [20] YANG Y,HUI B,YUAN H,et al.PrivateFL:Accurate,Diffe-rentially Private Federated Learning via Personalized Data Transformation[C]//32nd USENIX Security Symposium(USENIX Security 23).2023:1595-1612. [21] LI Q,WEN Z,WU Z,et al.A survey on federated learning systems:Vision,hype and reality for data privacy and protection[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(4):3347-3366. [22] KAIROUZ P,MCMAHAN H B,AVENT B,et al.Advancesand open problems in federated learning[J].Foundations and Trends in Machine Learning,2021,14(1/2):1-210. [23] WEI K,LI J,DING M,et al.Federated learning with differential privacy:Algorithms and performance analysis[J].IEEE Tran-sactions on Information Forensics and Security,2020,15:3454-3469. [24] SAJADMANESH S,SHAMSABADI A S,BELLET A,et al.Gap:Differentially private graph neural networks with aggregation perturbation[C]//32nd USENIX Security Symposium.2023. [25] SUN L,QIAN J,CHEN X.LDP-FL:Practical Private Aggregation in Federated Learning with Local Differential Privacy[C]//Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence.International Joint Conferences on Artificial Intelligence Organization,2021. [26] WANG N,XIAO X,YANG Y,et al.Collecting and analyzingmultidimensional data with local differential privacy[C]//2019 IEEE 35th International Conference on Data Engineering(ICDE).IEEE,2019:638-649. [27] DUCHI J C,JORDAN M I,WAINWRIGHT M J.Minimax optimal procedures for locally private estimation[J].Journal of the American Statistical Association,2018,113(521):182-201. [28] BU Z,DONG J,LONG Q,et al.Deep Learning with Gaussian Differential Privacy[J].Harvard Data Science Review,2020. [29] ABADI M,CHU A,GOODFELLOW I,et al.Deep learning with differential privacy[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.2016:308-318. [30] WANG N,XIAO X,YANG Y,et al.Collecting and analyzingmultidimensional data with local differential privacy[C]//2019 IEEE 35th International Conference on Data Engineering(ICDE).IEEE,2019:638-649. [31] ZHU L,LIU Z,HAN S.Deep leakage from gradients[C]//Advances in Neural Information Processing Systems.2019:14747-14756. [32] KARIMIREDDY S P,KALE S,MOHRI M,et al.Scaffold:Stochastic controlled averaging for federated learning[C]//International Conference on Machine Learning.PMLR,2020:5132-5143. [33] TAN Y,LONG G,LIU L,et al.Fedproto:Federated prototype learning across heterogeneous clients[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:8432-8440. [34] LI Q,DIAO Y,CHEN Q,et al.Federated learning on non-iid data silos:An experimental study[C]//2022 IEEE 38th International Conference on Data Engineering(ICDE).IEEE,2022:965-978. [35] SATTLER F,MÜLLER K R,SAMEK W.Clustered federated learning:Model-agnostic distributed multitask optimization under privacy constraints[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(8):3710-3722. [36] WU Q,HE K,CHEN X.Personalized federated learning for intelligent IoT applications:A cloud-edge based framework[J].IEEE Open Journal of the Computer Society,2020,1:35-44. [37] HÖNIG R,ZHAO Y,MULLINS R.DAdaQuant:Doubly-adap-tive quantization for communication-efficient Federated Learning[C]//International Conference on Machine Learning.PMLR,2022:8852-8866. [38] WANG Y,LIN L,CHEN J.Communication-efficient adaptivefederated learning[C]//International Conference on Machine Learning.PMLR,2022:22802-22838. [39] LI T,SAHU A K,TALWALKAR A,et al.Federated learning:Challenges,methods,and future directions[J].IEEE Signal Processing Magazine,2020,37(3):50-60. [40] NIELSEN M A.Neural networks and deep learning[M].SanFrancisco,CA,USA:Determination Press,2015. |
|