计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231200147-7.doi: 10.11896/jsjkx.231200147
卢钺1, 王琼2, 刘顺1, 李清涛1, 刘洋1, 王洪彪2
LU Yue1, WANG Qiong2, LIU Shun 1, LI Qingtao1, LIU Yang1, WANG Hongbiao2
摘要: 随着电动汽车数量的逐步增加,其接入对电网的负荷带来显著影响。在这一背景下,V2G/G2V技术被广泛认为能在电网管理方面发挥重要作用。以电动汽车的充放电控制算法为研究对象,引入了一种基于软演员评论家(SAC)的深度强化学习算法,从而实现对电动汽车连续充放电行为的精细控制。研究着眼于解决电网中负荷时序动态变化的难题,通过调整不同车辆在不同电价条件下的充放电功率,最大程度地提升用户的经济效益。此外,为应对充放电过程中可能导致电池损耗加剧的问题,引入了基于物理混合神经网络(PHNN)的电池损耗预测模型。同时,通过将充放电过程建模为马尔可夫决策问题,并将PHNN模型融入电动汽车的充放电控制中,构建了一个全新的奖励函数,以精确量化电池损耗所带来的成本。基于SAC算法,该奖励函数用于学习最优的充放电策略。实验结果显示,该算法能够有效地调控车辆的充放电行为,发挥电力网络调控作用,同时在充放电过程中降低对电池寿命造成的损耗,进一步保障用户经济利益。
中图分类号:
[1]ZHANG X,GAO F,GONG X,et al.Comparison of climatechange impact between power system of electric vehicles and internal combustion engine vehicles[C]//Advances in Energy and Environmental Materials:Proceedings of Chinese Materials Conference 2017 18th.2018:739-747. [2]LOPES J A P,SOARES F J,ALMEIDA P M R.Integration of electric vehicles in the electric power system[C]//Proceedings of the IEEE.2010:168-183. [3]KEMPTON W,TOMIĆ J.Vehicle-to-grid power implementa-tion:From stabilizing the grid to supporting large-scale renewable energy[J].Journal of Power Sources,2005,144(1):280-294. [4]SOVACOOL B K,KESTER J,NOEL L,et al.Actors,business models,and innovation activity systems for vehicle-to-grid(V2G) technology:A comprehensive review[J].Renewable and Sustainable Energy Reviews,2020,131:109963. [5]BALTHAZAR P,HARRI P,PRATER A,et al.Protecting yourpatients' interests in the era of big data,artificial intelligence,and predictive analytics[J].Journal of the American College of Radiology,2018,15(3):580-586. [6]CAO Y,WANG H,LI D,et al.Smart online charging algorithm for electric vehicles via customized actor-critic learning[J].IEEE Internet of Things Journal,2021,9(1):684-694. [7]WU D,ZENG H,LU C,et al.Two-stage energy management for office buildings with workplace EV charging and renewable energy[J].IEEE Transactions on Transportation Electrification,2017,3(1):225-237. [8]SORTOMME E,EL-SHARKAWI M A.Optimal combined bidding of vehicle-to-grid ancillary services[J].IEEE Transactions on Smart Grid,2011,3(1):70-79. [9]HAN S,HAN S,SEZAKI K.Development of an optimal vehicle-to-grid aggregator for frequency regulation[J].IEEE Transactions on Smart Grid,2010,1(1):65-72. [10]HUANG Q,JIA Q S,QIU Z,et al.Matching EV charging load with uncertain wind:A simulation-based policy improvement approach[J].IEEE Transactions on Smart Grid,2015,6(3):1425-1433. [11]CHUNG H M,MAHARJAN S,ZHANG Y,et al.Intelligentcharging management of electric vehicles considering dynamic user behavior and renewable energy:A stochastic game approach[J].IEEE Transactions on Intelligent Transportation Systems,2020,22(12):7760-7771. [12]ALSABBAGH A,WU B,MA C.Distributed electric vehiclescharging management considering time anxiety and customer behaviors[J/OL].IEEE Transactions on Industrial Informatics,2020,17(4):2422-2431.https://www.eia.gov/conference/2008/conf_pdfs/Tuesday/Hogan.pdf. [13]WAN Z,LI H,HE H,et al.Model-free real-time EV charging scheduling based on deep reinforcement learning[J].IEEE Transactions on Smart Grid,2018,10(5):5246-5257. [14]ZHANG F,YANG Q,AN D.CDDPG:A deep-reinforcement-learning-based approach for electric vehicle charging control[J].IEEE Internet of Things Journal,2020,8(5):3075-3087. [15]LI H,WAN Z,HE H.Constrained EV charging schedulingbased on safe deep reinforcement learning[J].IEEE Transactions on Smart Grid,2019,11(3):2427-2439. [16]YAN L,CHEN X,ZHOU J,et al.Deep reinforcement learning for continuous electric vehicles charging control with dynamic user behaviors[J].IEEE Transactions on Smart Grid,2021,12(6):5124-5134. [17]ARORA P,WHITE R E,DOYLE M.Capacity fade mechanisms and side reactions in lithium-ion batteries[J].Journal of the Electrochemical Society,1998,145(10):3647. [18]SONG Y,PENG Y,LIU D.Model-based health diagnosis forlithium-ion battery pack in space applications[J].IEEE Transactions on Industrial Electronics,2020,68(12):12375-12384. [19]HU X,YUAN H,ZOU C,et al.Co-estimation of state of charge and state of health for lithium-ion batteries based on fractional-order calculus[J].IEEE Transactions on Vehicular Technology,2018,67(11):10319-10329. [20]LI Y,WEI Z,XIONG B,et al.Adaptive ensemble-based electrochemical-thermal degradation state estimation of lithium-ion batteries[J].IEEE Transactions on Industrial Electronics,2021,69(7):6984-6996. [21]FU Y,XU J,SHI M,et al.A fast impedance calculation-based battery state-of-health estimation method[J].IEEE Transactions on Industrial Electronics,2021,69(7):7019-7028. [22]ZHANG Y,LIU Y,WANG J,et al.State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression[J].Energy,2022,239:121986. [23]REN L,DONG J,WANG X,et al.A data-driven auto-CNN-LSTM prediction model for lithium-ion battery remaining useful life[J].IEEE Transactions on Industrial Informatics,2020,17(5):3478-3487. [24]QIN Y,YUEN C,YIN X,et al.A Transferable Multistage ModelWith Cycling Discrepancy Learning for Lithium-Ion Battery State of Health Estimation[J].IEEE Transactions on Industrial Informatics,2022,19(2):1933-1946. [25]XU P,WANG C,YE J,et al.State-of-Charge Estimation and Health Prognosis for Lithium-Ion Batteries Based on Temperature-Compensated Bi-LSTM Network and Integrated Attention Mechanism[J].IEEE Transactions on Industrial Electronics,2023,66(10):8773-8783. [26]FAN Y,XIAO F,LI C,et al.A novel deep learning frameworkfor state of health estimation of lithium-ion battery[J].Journal of Energy Storage,2020,32:101741. [27]DUBARRY M,QIN N,BROOKER P.Calendar aging of commercial Li-ion cells of different chemistries-A review[J].Current Opinion in Electrochemistry,2018,9:106-113. [28]LI K,ZHOU P,LU Y,et al.Battery life estimation based oncloud data for electric vehicles[J].Journal of Power Sources,2020,468:228192. [29]WANG J,LIU P,HICKS-GARNER J,et al.Cycle-life model for graphite-LiFePO4 cells[J].Journal of Power Sources,2011,196(8):3942-3948. [30]NING G,HARAN B,POPOV B N.Capacity fade study of lithium-ion batteries cycled at high discharge rates[J].Journal of Power Sources,2003,117(1/2):160-169. [31]ISO New England.Real-time maps and charts[EB/OL].ht-tps://www.iso-ne.com/isoexpress/. [32]SAHA,B.AND GOEBEL,K.Moffett Field,CA,USA:NASA AmesPrognostics Data Repository[EB/OL].http://ti.arc.nasa.gov/project/prognostic-data-repository. [33]SCHULMAN J,WOLSKI F,DHARIWAL P,et al.Proximalpolicy optimization algorithms[J].arXiv:1707.06347,2017. |
|