计算机科学 ›› 2025, Vol. 52 ›› Issue (5): 149-160.doi: 10.11896/jsjkx.240200016

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于图熵理论的图数据增强研究

富坤1, 崔静远1, 党兴2,3, 成晓2,3, 应世聪1, 李建伟1   

  1. 1 河北工业大学人工智能与数据科学学院 天津 300401
    2 天津航天机电设备研究所 天津 300462
    3天津市宇航智能装备技术企业重点实验室 天津 300462
  • 收稿日期:2024-02-02 修回日期:2024-05-25 出版日期:2025-05-15 发布日期:2025-05-12
  • 通讯作者: 富坤(fukun@hebut.edu.cn)
  • 基金资助:
    国家自然科学基金(62072154);天津市科技计划项目(22JCYBJC01740);河北省重大科技成果转化专项(22280803Z)

Study on Graph Data Augmentation Based on Graph Entropy Theory

FU Kun1, CUI Jingyuan1, DANG Xing2,3, CHENG Xiao2,3, YING Shicong1, LI Jianwei1   

  1. 1 School of Artificial Intelligence and Data Science,Hebei University of Technology,Tianjin 300401,China
    2 Tianjin Institute of Aerospace Mechanical and Electrical Equipment,Tianjin 300462,China
    3 Tianjin Key Laboratory of Aerospace Intelligent Equipment Technology,Tianjin 300462,China
  • Received:2024-02-02 Revised:2024-05-25 Online:2025-05-15 Published:2025-05-12
  • About author:FU Kun,born in 1979,Ph.D,associate professor.Her main research interests include network representation learning and social network analysis.
  • Supported by:
    National Natural Science Foundation of China(62072154),Tianjin Science and Technology Plan Project(22JCYBJC01740) and Hebei Province Major Science and Technology Achievement Transformation Special Project(22280803Z).

摘要: 图数据增强是一种通过变换和扩充图结构和节点特征来增加训练数据多样性、提高图神经网络性能的技术。为了应对图数据增强面临的难以综合信息完整性、特征平滑性、图多样性和局部依赖关系的挑战,缓解图神经网络的过平滑和过拟合问题,提高其性能,提出了一种基于物理热力学中的熵理论的图数据增强模型(Neighbor Replacement Based on Graph Entropy,NRGE)。首先,引入了一种新的图熵定义,用于度量数据流形平滑度;基于减少图熵损失的思想,提出了一种新的数据增强策略,用于生成更多合适的训练数据。然后,通过增强节点的采样邻居,以保证数据增强的一致性;采用随机替换节点的一阶邻居为二阶邻居的方式,增加了数据增强的多样性。最后,引入了邻居约束正则化方法,通过约束增强后的邻居之间的预测一致性来提高模型性能。消融实验结果表明,通过保持三角形图案的信息结构,NRGE模型能够有效降低图熵损失,从而改善学习效果。在Cora,Citeseer和Pubmed 3个公开数据集上进行了节点分类实验,相较于基准模型,NRGE模型在Cora数据集上提升了1.1%,在Citeseer数据集上提升了0.8%,在Pubmed数据集上略微降低了0.4%。结果表明,NRGE模型有效改善了图神经网络的性能,提高了其泛化能力。

关键词: 图熵, 图数据增强, 邻居替换, 一致性和多样性, 结构增强

Abstract: Graph data augmentation,as a technique aiming to enhance the performance of graph neural networks,involves transforming and expanding the graph structure and node features to increase the diversity and quantity of training data.The integrity of information structures,the smoothness of feature manifold,the diversity of graph,and local dependencies are difficult to comprehensively considered in graph data augmentation.Additionally,over-smoothing and over-fitting problems exist in the training of graph neural networks,which limit their learning capabilities.To address these issues,a graph data augmentation model(NRGE) based on the entropy theory in thermodynamics is proposed.Firstly,a novel definition of graph entropy is introduced to measure the smoothness of the feature manifold.A new data augmentation strategy,whose main idea is to reduce the loss of graph entropy is proposed to generate more appropriate training data.Secondly, the sampling neighbors of the nodes are augmented to ensure the consistency of data augmentation.To increase the diversity of data augmentation,the first-order neighbors of nodes are randomly replaced with their second-order neighbors.Finally,a neighbor-constrained regularization method is introduced,which improves model performance by enforcing prediction consistency between augmented neighbors.Ablation experiments show that the NRGE model effectively reduces the loss of graph entropy by preserving the information structure of triangles,thereby improving learning effect.Three real datasets are trained by the NRGE model.The obtained low-dimensional representation is applied to node classification.Compared with the baseline methods,the NRGE model achieves a performance improvement of 1.1% on the Cora dataset,0.8% on the Citeseer dataset,and a slight decrease of 0.4% on the Pubmed dataset.The experimental results show that the NRGE model can significantly enhance the performance of graph neural networks and improve the generalization ability.

Key words: Graph entropy, Graph data augmentation, Neighbor replacement, Consistency and diversity, Structural enhancement

中图分类号: 

  • TP391
[1]ZHANG D,YIN J,ZHU X,et al.Network representation lear-ning:A survey[J].IEEE Transactions on Big Data,2020,6(1):3-28.
[2]KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[J].arXiv:1609.02907,2016.
[3]SUN K,LIN Z,ZHU Z.Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:5892-5899.
[4]CUBUK E D,ZOPH B,MANE D,et al.Autoaugment:Learning augmentation strategies from data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:113-123.
[5]ADJEISAH M,ZHU X,XU H,et al.Towards data augmentation in graph neural network:An overview and evaluation[J].Computer Science Review,2023,47:100527.
[6]ZHAO T,JIN W,LIU Y,et al.Graph Data Augmentation for Graph Machine Learning:A Survey[J].arXiv:2202.08871,2022.
[7]EBRAHIMZADEH A,GISKI Z E,MARKECHOVÁ D.Logical entropy of dynamical systems-A general model[J].Mathema-tics,2017,5(1):4.
[8]LIU X,SUN D,WEI W.A Graph Data Augmentation Strategy with Entropy Preservation[J].arXiv:2107.06048,2021.
[9]BO D,HU B,WANG X,et al.Regularizing Graph Neural Networks via Consistency-Diversity Graph Augmentations[J].Proceedings of the AAAI Conference on Artificial Intelligence,2022,36(4):3913-3921.
[10]HAMILTON W L,YING R,LESKOVEC J.RepresentationLearning on Graphs:Methods and Applications[J].arXiv:1709.05584,2017.
[11]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035.
[12]DASOULAS G,SCAMAN K,VIRMAUX A.Lipschitz Norma-lization for Self-Attention Layers with Application to Graph Neural Networks[J].arXiv:2103.04886,2021.
[13]ZHANG M,CHEN Y.Link prediction based on graph neural networks[C]//Proceedings of the 32nd International Confe-rence on Neural Information Processing Systems.2018:5171-5181.
[14]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling Relational Data with Graph Convolutional Networks[C]//ESWC.Cham:Springer International Publishing,2018:593-607.
[15]KIPF T N,WELLING M.Variational Graph Auto-Encoders[J].arXiv:1611.07308,2016.
[16]YING Z,YOU J,MORRIS C,et al.Hierarchical graph representation learning with differentiable pooling[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:4805-4815.
[17]LI G,MÜLLER M,THABET A,et al.DeepGCNs:Can GCNs go as deep as CNNs?[C]//2019IEEE/CVF International Conference on Computer Vision(ICCV).IEEE,2019:9266-9275.
[18]XUE W,LI T.Aspect Based Sentiment Analysis with GatedConvolutional Networks[J].arXiv:1805.07043,2018.
[19]DING K,XU Z,TONG H,et al.Data Augmentation for Deep Graph Learning:A Survey[J].ACM SIGKDD Explorations Newsletter,2022,24(2):61-77.
[20]SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research,2014,15(1):1929-1958.
[21]RONG Y,HUANG W,XU T,et al.DropEdge:Towards Deep Graph Convolutional Networks on Node Classification[J].ar-Xiv:1907.10903,2019.
[22]FENG W,ZHANG J,DONG Y,et al.Graph random neural networks for semi-supervised learning on graphs[J].Advances in Neural Information Processing Systems,2020,33:22092-22103.
[23]VERMA V,QU M,KAWAGUCHI K,et al.Graphmix:Im-proved training of GNNs for semi-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:10024-10032.
[24]WANG Y,WANG W,LIANG Y,et al.NodeAug:Semi-Supervised Node Classification with Data Augmentation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2020:207-217.
[25]FENG F,HE X,TANG J,et al.Graph adversarial training:Dynamically regularizing based on graph structure[J].IEEE Transactions on Knowledge and Data Engineering,2019,33(6):2493-2504.
[26]PARK H,LEE S,KIM S,et al.Metropolis-Hastings Data Augmentation for Graph Neural Networks[J].arXiv:2203.14802,2022.
[27]AMIGÓ J M,BALOGH S G,HERNÁNDEZ S.A brief review of generalized entropies[J].Entropy,2018,20(11):813.
[28]HUANG W,ZHANG T,RONG Y,et al.Adaptive sampling towards fast graph representation learning[J].arXiv:1809.05343,2018.
[29]JIZBA P,KORBEL J.Maximum Entropy Principle in Statistical Inference:Case for Non-Shannonian Entropies[J].Physical Review Letters,2019,122(12):120601.
[30]RASHEVSKY N.Life,information theory,and topology[J].The Bulletin of Mathematical Biophysics,1955,17(3):229-235.
[31]MOWSHOWITZ A,DEHMER M.Entropy and the complexity of graphs revisited[J].Entropy,2012,14(3):559-570.
[32]KORNER J.Coding of an information source having ambiguous alphabet and the entropy of graphs[C]//6th Prague Conference on Information Theory.Academia,Prague,1971:411-425.
[33]HUANG X,QI G,WEI H,et al.A novel infrared and visibleimage information fusion method based on phase congruency and image entropy[J].Entropy,2019,21(12):1135.
[34]WANG Y Q,WU M H,GENG F Q,et al.An UnderwaterImage Enhancement Algorithm Based on Image Entropy Linear Weighting[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2024(4):69-76.
[35]MCCALLUM A K.Automating the Construction of InternetPortals with Machine Learning[J].Discover Computing,2000,3:127-163.
[36]GILES C L,BOLLACKER K D,LAWRENCE S.CiteSeer:an automatic citation indexing system[C]//Proceedings of the third ACM conference on Digital libraries( DL'98).ACM,1998:89-98.
[37]SEN P,NAMATA G,BILGIC M,et al.Collective classification in network data[J].AI Magazine,2008,29(3):93-93.
[38]YIN H,BENSON A R,LESKOVEC J.Higher-order clustering in networks[J].Physical Review E,2018,97(5):052306.
[39]BENSON A R,GLEICH D F,LESKOVEC J.Higher-order organization of complex networks[J].Science,2016,353(6295):163-166.
[40]BURKHARDT P.Triangle Centrality[J].arXiv:2105.00110,2021.
[41]SHCHUR O,MUMME M,BOJCHEVSKI A,et al.Pitfalls of Graph Neural Network Evaluation[J].arXiv:1811.05868,2018.
[42]ZHOU D,BOUSQUET O,LAL T,et al.Learning with local and global consistency[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2003.
[43]LI Q,WU X M,LIU H,et al.Label efficient semi-supervised learning via graph filtering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9582-9591.
[44]WANG H,LESKOVEC J.Unifying Graph Convolutional Neural Networks and Label Propagation[J].arXiv:2002.06755,2020.
[45]QU M,BENGIO Y,TANG J.GMNN:Graph Markov NeuralNetworks[C///Proceedings of the 36th International Confe-rence on Machine Learning.PMLR,2019:241-5250.
[46]ABU-EL-HAIJA S,PEROZZI B,KAPOOR A, et al.MixHop Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing[C]//Proceedings of the 36th International Conference on Machine Learning.PMLR,2019:21-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!