Computer Science ›› 2025, Vol. 52 ›› Issue (5): 149-160.doi: 10.11896/jsjkx.240200016
• Database & Big Data & Data Science • Previous Articles Next Articles
FU Kun1, CUI Jingyuan1, DANG Xing2,3, CHENG Xiao2,3, YING Shicong1, LI Jianwei1
CLC Number:
[1]ZHANG D,YIN J,ZHU X,et al.Network representation lear-ning:A survey[J].IEEE Transactions on Big Data,2020,6(1):3-28. [2]KIPF T N,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[J].arXiv:1609.02907,2016. [3]SUN K,LIN Z,ZHU Z.Multi-stage self-supervised learning for graph convolutional networks on graphs with few labeled nodes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:5892-5899. [4]CUBUK E D,ZOPH B,MANE D,et al.Autoaugment:Learning augmentation strategies from data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:113-123. [5]ADJEISAH M,ZHU X,XU H,et al.Towards data augmentation in graph neural network:An overview and evaluation[J].Computer Science Review,2023,47:100527. [6]ZHAO T,JIN W,LIU Y,et al.Graph Data Augmentation for Graph Machine Learning:A Survey[J].arXiv:2202.08871,2022. [7]EBRAHIMZADEH A,GISKI Z E,MARKECHOVÁ D.Logical entropy of dynamical systems-A general model[J].Mathema-tics,2017,5(1):4. [8]LIU X,SUN D,WEI W.A Graph Data Augmentation Strategy with Entropy Preservation[J].arXiv:2107.06048,2021. [9]BO D,HU B,WANG X,et al.Regularizing Graph Neural Networks via Consistency-Diversity Graph Augmentations[J].Proceedings of the AAAI Conference on Artificial Intelligence,2022,36(4):3913-3921. [10]HAMILTON W L,YING R,LESKOVEC J.RepresentationLearning on Graphs:Methods and Applications[J].arXiv:1709.05584,2017. [11]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:1025-1035. [12]DASOULAS G,SCAMAN K,VIRMAUX A.Lipschitz Norma-lization for Self-Attention Layers with Application to Graph Neural Networks[J].arXiv:2103.04886,2021. [13]ZHANG M,CHEN Y.Link prediction based on graph neural networks[C]//Proceedings of the 32nd International Confe-rence on Neural Information Processing Systems.2018:5171-5181. [14]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling Relational Data with Graph Convolutional Networks[C]//ESWC.Cham:Springer International Publishing,2018:593-607. [15]KIPF T N,WELLING M.Variational Graph Auto-Encoders[J].arXiv:1611.07308,2016. [16]YING Z,YOU J,MORRIS C,et al.Hierarchical graph representation learning with differentiable pooling[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:4805-4815. [17]LI G,MÜLLER M,THABET A,et al.DeepGCNs:Can GCNs go as deep as CNNs?[C]//2019IEEE/CVF International Conference on Computer Vision(ICCV).IEEE,2019:9266-9275. [18]XUE W,LI T.Aspect Based Sentiment Analysis with GatedConvolutional Networks[J].arXiv:1805.07043,2018. [19]DING K,XU Z,TONG H,et al.Data Augmentation for Deep Graph Learning:A Survey[J].ACM SIGKDD Explorations Newsletter,2022,24(2):61-77. [20]SRIVASTAVA N,HINTON G,KRIZHEVSKY A,et al.Dropout:a simple way to prevent neural networks from overfitting[J].The Journal of Machine Learning Research,2014,15(1):1929-1958. [21]RONG Y,HUANG W,XU T,et al.DropEdge:Towards Deep Graph Convolutional Networks on Node Classification[J].ar-Xiv:1907.10903,2019. [22]FENG W,ZHANG J,DONG Y,et al.Graph random neural networks for semi-supervised learning on graphs[J].Advances in Neural Information Processing Systems,2020,33:22092-22103. [23]VERMA V,QU M,KAWAGUCHI K,et al.Graphmix:Im-proved training of GNNs for semi-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:10024-10032. [24]WANG Y,WANG W,LIANG Y,et al.NodeAug:Semi-Supervised Node Classification with Data Augmentation[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2020:207-217. [25]FENG F,HE X,TANG J,et al.Graph adversarial training:Dynamically regularizing based on graph structure[J].IEEE Transactions on Knowledge and Data Engineering,2019,33(6):2493-2504. [26]PARK H,LEE S,KIM S,et al.Metropolis-Hastings Data Augmentation for Graph Neural Networks[J].arXiv:2203.14802,2022. [27]AMIGÓ J M,BALOGH S G,HERNÁNDEZ S.A brief review of generalized entropies[J].Entropy,2018,20(11):813. [28]HUANG W,ZHANG T,RONG Y,et al.Adaptive sampling towards fast graph representation learning[J].arXiv:1809.05343,2018. [29]JIZBA P,KORBEL J.Maximum Entropy Principle in Statistical Inference:Case for Non-Shannonian Entropies[J].Physical Review Letters,2019,122(12):120601. [30]RASHEVSKY N.Life,information theory,and topology[J].The Bulletin of Mathematical Biophysics,1955,17(3):229-235. [31]MOWSHOWITZ A,DEHMER M.Entropy and the complexity of graphs revisited[J].Entropy,2012,14(3):559-570. [32]KORNER J.Coding of an information source having ambiguous alphabet and the entropy of graphs[C]//6th Prague Conference on Information Theory.Academia,Prague,1971:411-425. [33]HUANG X,QI G,WEI H,et al.A novel infrared and visibleimage information fusion method based on phase congruency and image entropy[J].Entropy,2019,21(12):1135. [34]WANG Y Q,WU M H,GENG F Q,et al.An UnderwaterImage Enhancement Algorithm Based on Image Entropy Linear Weighting[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2024(4):69-76. [35]MCCALLUM A K.Automating the Construction of InternetPortals with Machine Learning[J].Discover Computing,2000,3:127-163. [36]GILES C L,BOLLACKER K D,LAWRENCE S.CiteSeer:an automatic citation indexing system[C]//Proceedings of the third ACM conference on Digital libraries( DL'98).ACM,1998:89-98. [37]SEN P,NAMATA G,BILGIC M,et al.Collective classification in network data[J].AI Magazine,2008,29(3):93-93. [38]YIN H,BENSON A R,LESKOVEC J.Higher-order clustering in networks[J].Physical Review E,2018,97(5):052306. [39]BENSON A R,GLEICH D F,LESKOVEC J.Higher-order organization of complex networks[J].Science,2016,353(6295):163-166. [40]BURKHARDT P.Triangle Centrality[J].arXiv:2105.00110,2021. [41]SHCHUR O,MUMME M,BOJCHEVSKI A,et al.Pitfalls of Graph Neural Network Evaluation[J].arXiv:1811.05868,2018. [42]ZHOU D,BOUSQUET O,LAL T,et al.Learning with local and global consistency[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2003. [43]LI Q,WU X M,LIU H,et al.Label efficient semi-supervised learning via graph filtering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9582-9591. [44]WANG H,LESKOVEC J.Unifying Graph Convolutional Neural Networks and Label Propagation[J].arXiv:2002.06755,2020. [45]QU M,BENGIO Y,TANG J.GMNN:Graph Markov NeuralNetworks[C///Proceedings of the 36th International Confe-rence on Machine Learning.PMLR,2019:241-5250. [46]ABU-EL-HAIJA S,PEROZZI B,KAPOOR A, et al.MixHop Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing[C]//Proceedings of the 36th International Conference on Machine Learning.PMLR,2019:21-29. |
[1] | LI Enji, HU Siyu, TAN Guangming, JIA Weile. Impact and Analysis of Optimizers on the Performance of Neural Network Force Fields [J]. Computer Science, 2025, 52(5): 50-57. |
[2] | ZHANG Jiaxiang, PAN Min, ZHANG Rui. Study on EEG Emotion Recognition Method Based on Self-supervised Graph Network [J]. Computer Science, 2025, 52(5): 122-127. |
[3] | JIN Hong, CHEN Like, YOU Lan, LYU Shunying, ZHOU Kaicheng, XIAO Kui. Point-of-interest Recommendation Based on Geospatial-TemporalCorrelations and Social Influence [J]. Computer Science, 2025, 52(5): 128-138. |
[4] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
[5] | WANG Haiyong, DING Gufei. ECG Signal Denoising Method Based on Stationary Wavelet Transform with Hyperbolic TangentThreshold Function [J]. Computer Science, 2025, 52(5): 179-186. |
[6] | KONG Yu, XIONG Fengguang, ZHANG Zhiqiang, SHEN Chaofan, HU Mingyue. Low Overlap Point Cloud Registration Method Based on Deep Position-aware Transformer [J]. Computer Science, 2025, 52(5): 199-211. |
[7] | JIANG Wenwen, XIA Ying. Improved U-Net Multi-scale Feature Fusion Semantic Segmentation Network for RemoteSensing Images [J]. Computer Science, 2025, 52(5): 212-219. |
[8] | HUANG Qian, SU Xinkai, LI Chang, WU Yirui. Hypergraph Convolutional Network with Multi-perspective Topology Refinement forSkeleton-based Action Recognition [J]. Computer Science, 2025, 52(5): 220-226. |
[9] | HE Chunhui, GE Bin, ZHANG Chong, XU Hao. Intelligent Error Correction Model for Chinese Idioms Fused with Fixed-length Seq2Seq Network [J]. Computer Science, 2025, 52(5): 227-234. |
[10] | HAN Daojun, LI Yunsong, ZHANG Juntao, WANG Zemin. Knowledge Graph Completion Method Fusing Entity Descriptions and Topological Structure [J]. Computer Science, 2025, 52(5): 260-269. |
[11] | LI Xiwang, CAO Peisong, WU Yuying, GUO Shuming, SHE Wei. Study on Security Risk Relation Extraction Based on Multi-view IB [J]. Computer Science, 2025, 52(5): 330-336. |
[12] | LI Xiaolan, MA Yong. Study on Lightweight Flame Detection Algorithm with Progressive Adaptive Feature Fusion [J]. Computer Science, 2025, 52(4): 64-73. |
[13] | PANG Mingyi, WEI Xianglin, ZHANG Yunxiang, WANG Bin, ZHUANG Jianjun. Efficient Adaptive CNN Accelerator for Resource-limited Chips [J]. Computer Science, 2025, 52(4): 94-100. |
[14] | DENG Ceyu, LI Duantengchuan, HU Yiren, WANG Xiaoguang, LI Zhifei. Joint Inter-word and Inter-sentence Multi-relationship Modeling for Review-basedRecommendation Algorithm [J]. Computer Science, 2025, 52(4): 119-128. |
[15] | WU Jie, WAN Yuan, LIU Qiujie. Consistent Block Diagonal and Exclusive Multi-view Subspace Clustering [J]. Computer Science, 2025, 52(4): 138-146. |
|