计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 369-380.doi: 10.11896/jsjkx.240200092
何元康1, 马海龙1,2, 胡涛1, 江逸茗1,2
HE Yuankang1, MA Hailong1,2, HU Tao1, JIANG Yiming1,2
摘要: 当前,基于深度学习的异常流量检测模型容易遭受流量对抗样本攻击。作为防御对抗攻击的有效方法,对抗训练虽然提升了模型鲁棒性,但也导致了模型检测精度下降。因此,如何有效平衡模型检测性能和鲁棒性是当前学术界研究的热点问题。针对该问题,基于集成学习思想构建多模型对抗防御框架,通过结合主动性特征差分选择和被动性对抗训练,来提升模型的对抗鲁棒性和检测性能。该框架由特征差分选择模块、检测体集成模块和投票裁决模块组成,用于解决单检测模型无法平衡检测性能与鲁棒性、防御滞后的问题。在模型训练方面,设计了基于特征差分选择的训练数据构造方法,通过有差异性地选择和组合流量特征,形成差异化流量样本数据,用于训练多个异构检测模型,以抵御单模型对抗攻击;在模型裁决方面,对多模型检测结果进行裁决输出,基于改进的启发式种群算法优化集成模型裁决策略,在提升检测精度的同时,增大了对抗样本生成的难度。实验效果显示,所提方法的性能相比单个模型对抗训练有较大提升,相较于现有的集成防御方法,其准确率和鲁棒性提升了近10%。
中图分类号:
[1]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-BasedLearning Applied to Document Recognition[J].The IEEE,1998,86(11):2278-2324. [2]MCCARTHY A,GHADAFI E,ANDRIOTIS P,et al.Defending against adversarial machine learning attacks using hierarchical learning:A case study on network traffic attack classification[J].Journal of Information Security and Applications,2023,72:103398. [3]BONNET B.Understanding,taming,and defending from adversarial examples[D].Université de Rennes,2023. [4]KO K,KIM S H,KWON H.Multi-targeted audio adversarial example for use against speech recognition systems[J].Computers & Security,2023,128:103168. [5]MACAS M,WU C,FUERTES W.Adversarial examples:A survey of attacks and defenses in deep learning-enabled cybersecurity systems[J].Expert Systems with Applications,2023:122223. [6]FAN H,WANG R,HUANG X,et al.Deep joint adversariallearning for anomaly detection on attribute networks[J].Information Sciences,2024,654:119840. [7]WANG K,WANG Z,HAN D,et al.BARS:Local Robustness Certification for Deep Learning based Traffic Analysis Systems[C]//NDSS.2023. [8]ANTHI E,WILLIAMS L,RHODE M,et al.Adversarial attacks on machine learning cybersecurity defences in industrial control systems[J].Journal of Information Security and Applications,2021,58:102717. [9]HORCHULHACK P,VIEGAS E K,LOPEZ M A.A StreamLearning Intrusion Detection System for Concept Drifting Network Traffic[C]//2022 6th Cyber Security in Networking Conference(CSNet).IEEE,2022:1-7. [10]HU Y J,GUO Y B,MA J,et al.Method to generate cyber deception traffic based on adversarial example[J].Journal on Communications,2020,41(9):59-70. [11]SHARON Y,BEREND D,LIU Y,et al.Tantra:timing-basedadversarial network traffic reshaping attack[J].IEEE Transactions on Information Forensics and Security,2022,17:3225-3237. [12]NOVO C,MORLA R.Flow-based detection and proxy-basedevasion of encrypted malware c2 traffic[C]//Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security.2020:83-91. [13]SADEGHZADEH A M,SHIRAVI S,JALILI R.Adversarialnetwork traffic:Towards evaluating the robustness of deep-learning-based network traffic classification[J].IEEE Transactions on Network and Service Management,2021,18(2):1962-1976. [14]XIANG Y,HØJVANG J L,RASMUSSEN M H,et al.A two-stage deep representation learning-based speech enhancement method using variational autoencoder and adversarial training[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2023,32:164-177. [15]YIN Y,JANG-JACCARD J,XU W,et al.IGRF-RFE:a hybrid feature selection method for MLP-based network intrusion detection on UNSW-NB15 dataset[J].Journal of Big data,2023,10(1):15. [16]ARIVAZHAGAN S,RUSSEL N S,SARANYAA M.CNN-based Approach for Robust Detection of Copy-Move Forgery in Images[J].Inteligencia Artificial,2024,27(73):80-91. [17]DEBICHA I,BAUWENS R,DEBATTY T,et al.TAD:Transfer learning-based multi-adversarial detection of evasion attacks against network intrusion detection systems[J].Future Generation Computer Systems,2023,138:185-197. [18]SHU D,LESLIE N O,KAMHOUA C A,et al.Generative adversarial attacks against intrusion detection systems using active learning[C]//Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning.2020:1-6. [19]MACHADO G R,SILVA E,GOLDSCHMIDT R R.Adversarial machine learning in image classification:A survey toward the defender’s perspective[J].ACM Computing Surveys,2021,55(1):1-38. [20]SUN P,LI S,XIE J,et al.GPMT:Generating practical malicious traffic based on adversarial attacks with little prior knowledge[J].Computers & Security,2023,130:103257. [21]RUST-NGUYEN N,SHARMA S,STAMP M.Darknet Traffic Classification and Adversarial Attacks Using Machine Learning[J].Computers & Security,2023,127:103098. [22]CHENG Q,ZHOU S,SHEN Y,et al.Packet-level adversarialnetwork traffic crafting using sequence generative adversarial networks[J].arXiv:2103.04794,2021. [23]CHERNIKOVA A,OPREA A.Fence:Feasible evasion attacks on neural networks in constrained environments[J].ACM Transactions on Privacy and Security,2022,25(4):1-34. [24]WANG N,CHEN Y,XIAO Y,et al.Manda:On adversarial example detection for network intrusion detection system[J].IEEE Transactions on Dependable and Secure Computing,2022,20(2):1139-1153. [25]HUANG W,PENG X,SHI Z,et al.Adversarial attack against LSTM-based DDoS intrusion detection system[C]//2020 IEEE 32nd International Conference on Tools with Artificial Intelligence(ICTAI).IEEE,2020:686-693. [26]CHEN J Y,WU C A,ZHENG H B.Novel defense based onsoftmax activation transformation[J].Chinese Journal of Network and Information Security,2022,8(2):48-63. [27]PAPERNOT N,MCDANIEL P,WU X,et al.Distillation as a defense to adversarial perturbations against deep neural networks[C]//2016 IEEE Symposium on Security and Privacy(SP).IEEE,2016:582-597. [28]WANG B,GUO Y K,QIAN Y G,et al.Defense of Traffic Classifiers based on Convolutional Networks against Adversarial Examples[J].Journal of Cyber Security,2022,7(1):145-156. [29]DE LUCIA M J,COTTON C.A network security classifier defense:against adversarial machine learning attacks[C]//Proceedings of the 2nd ACM Workshop on Wireless Security and Machine Learning.2020:67-73. [30]RUST-NGUYEN N,SHARMA S,STAMP M.Darknet trafficclassification and adversarial attacks using machine learning[J].Computers & Security,2023,127:103098. [31]ROSS A,MACHADO G R,SILVA E,et al.Adversarial machine learning in image classification:A survey toward the defender’s perspective[J].ACM Computing Surveys(CSUR),2021,55(1):1-38. [32]HASHEMI M J,KELLER E.Enhancing robustness against adversarial examples in network intrusion detection systems[C]//2020 IEEE Conference on Network Function Virtualization and Software Defined Networks(NFV-SDN).IEEE,2020:37-43. [33]BEECHEY M,LAMBOTHARAN S,KYRIAKOPOULOS KG.Evidential classification for defending against adversarial attacks on network traffic[J].Information Fusion,2023,92:115-126. [34]CHEN S H,SHEN H J,WANG R,et al.Relationship Between Prediction Uncertainty and Adversarial Robustness[J].Journal of Software,2022,33(2):524-538. [35]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [36]HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[J].arXiv:1503.02531,2015. [37]MACAS M,WU C,FUERTES W.Adversarial examples:A survey of attacks and defenses in deep learning-enabled cybersecurity systems[J].Expert Systems with Applications,2023,238:122223. [38]BORGONJON T,MAENHOUT B.A genetic algorithm for the personnel task rescheduling problem with time preemption[J].Expert Systems with Applications,2024,238:121868. [39]SHARAFALDIN I,LASHKARI A H,GHORBANI A A.Toward generating a new intrusion detection dataset and intrusion traffic characterization[J].ICISSP,2018,1:108-116. |
|