计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400043-7.doi: 10.11896/jsjkx.230400043
梁美彦1, 范莹莹1, 王琳2,3
LIANG Meiyan1, FAN Yingying1, WANG Lin2,3
摘要: 结肠病理学图像的细粒度分类对癌症治疗和预后评估都具有重要意义。然而,结肠病理学图像尤其是其组织学亚型图像在形态上极为相似,通过人工的方法进行高精度识别面临着巨大的挑战。而基于单个模型的计算机辅助诊断方法容易产生预测偏差。为此,提出了多距离测度异质集成学习的细粒度分类方法对结肠病理学微卫星状态进行分型预测。该方法分别通过余弦距离、曼哈顿距离与欧氏距离在潜在空间上度量每个基学习器输出的置信分数与理想解的差距,来集成不同基学习器的预测,再通过融合这些距离来提高模型的整体决策性能。实验结果表明,该方法在结肠病理学图像细粒度分类任务上,分类准确率、精确率、召回率与F-1分值都达到了94%以上,为病理学图像的亚型分类提供了新的视角。
中图分类号:
[1]ZHENG R,ZHANG S,ZENG H,et al.Cancer incidence andmortality in China,2016[J].Journal of the National Cancer Center,2022,2(1):1-9. [2]SUNG H,FERLAY J,SIEGEL R L,et al.Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J].CA:A Cancer Journal for Clinicians,2021,71(3):209-249. [3]XIA C,DONG X,LI H,et al.Cancer statistics in China andUnited States,2022:profiles,trends,and determinants[J].Chinese Medical Journal,2022,135(5):584-590. [4]YUAN Y.Chinese expert consensus on detection of microsatellite instability in colorectal cancer and other related solid tumors[J].Journal of Practical Oncology,2019(5):381-389. [5]LI X,LI W,TAO R.Staged detection-identification frameworkfor cell nuclei in histopathology images[J].IEEE Transactions on Instrumentation and Measurement,2019,69(1):183-193. [6]MALLICK P K,RYU S H,SATAPATHY S K,et al.BrainMRI image classification for cancer detection using deep wavelet autoencoder-based deep neural network[J].IEEE Access,2019,7:46278-46287. [7]WANG T,LU W,YANG F,et al.Microsatellite instability prediction of uterine corpus endometrial carcinoma based on H&E histology whole-slide imaging[C]//2020 IEEE 17th International Symposium on Biomedical Imaging(ISBI).IEEE,2020:1289-1292 [8]SONG Z,YU C,ZOU S,et al.Automatic deep learning-basedcolorectal adenoma detection system and its similarities with pathologists[J].BMJ Open,2020,10(9):e036423. [9]BYCHKOY D,LINDER N,TURKKI R,et al.Deep learningbased tissue analysis predicts outcome in colorectal cancer[J].Scientific Reports,2018,8(1):1-11. [10]HAN Z,WEI B,ZHENG Y,et al.Breast cancer multi-classification from histopathological images with structured deep learning model[J].Scientific Reports,2017,7(1):1-10. [11]GOUR M,JAIN S,SUNIL KUMAR T.Residual learning based CNN for breast cancer histopathological image classification[J].International Journal of Imaging Systems and Technology,2020,30(3):621-635. [12]LI L,PAN X,YANG H,et al.Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images[J].Multimedia Tools and Applications,2020,79(21):14509-14528. [13]CAO R,YANG F,MA S C,et al.Development and interpretation of a pathomics-based model for the prediction of microsatellite instability in Colorectal Cancer[J].Theranostics,2020,10(24):11080. [14]KATHER J N,PEARSON A T,HALAMA N,et al.Deep learningcan predict microsatellite instability directly from histology in gastrointestinal cancer[J].Nature Medicine,2019,25(7):1054-1056. [15]YAMASHITA R,LONG J,LONGACRE T,et al.Deep learning model for the prediction of microsatellite instability in colorectal cancer:a diagnostic study[J].The Lancet Oncology,2021,22(1):132-141. [16]LEE H,SEO J,LEE G,et al.Two-stage classification method for MSI status prediction based on deep learning approach[J].Applied Sciences,2020,11(1):254. [17]SAI VENKATESH C H,MERIGA C,GEETHIKA M,et al.Modified ResNetModel for MSI and MSS Classification of Gastrointestinal Cancer[C]//High Performance Computing and Networking.Springer,Singapore,2022:273-282. [18]KHAN Z,LOGANATHAN R.Transfer Learning Based Classification of MSI and MSS Gastrointestinal Cancer[R].Easy Chair,2022. [19]XUE D,ZHOU X,LI C,et al.An application of transfer learning and ensemble learning techniques for cervical histopathology image classification[J].IEEE Access,2020,8:104603-104618. [20]BASHIR S,QAMAR U,KHAN F H.Heterogeneous classifiers fusion for dynamic breast cancer diagnosis using weighted vote based ensemble[J].Quality & Quantity,2015,49(5):2061-2076. [21]SARWAR A,SHARMA V,GUPTA R.Hybrid ensemble learning technique for screening of cervical cancer using Papanicolaou smear image analysis[J].Personalized Medicine Universe,2015,4:54-62. [22]WIN K P,KITJAIDURE Y,HAMAMOTO K,et al.Computer-assisted screening for cervical cancer using digital image processing of pap smear images[J].Applied Sciences,2020,10(5):1800. [23]MANNA A,KUNDU R,KAPLUN D,et al.A fuzzy rank-based ensemble of CNN models for classification of cervical cytology[J].Scientific Reports,2021,11(1):1-18. [24]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [25]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [26]SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-resnet and the impact of residual connections on learning[C]//Thirty-first AAAI Conference on Artificial Intelligence.2017. |
|