计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600043-7.doi: 10.11896/jsjkx.230600043

• 图像处理&多媒体技术 • 上一篇    下一篇

基于集成学习的MRI脑肿瘤智能诊断

李鑫蕊1, 张艳芳2, 康晓东1, 李博3, 韩俊玲1,4   

  1. 1 天津医科大学医学影像学院 天津 300202
    2 重庆大学附属黔江医院 重庆 409000
    3 天津市第三中心医院 天津 300170
    4 天津市第一中心医院 天津 300192
  • 发布日期:2024-06-06
  • 通讯作者: 张艳芳(lixinrui1121@163.com)
  • 作者简介:(lixinrui1121@163.com)
  • 基金资助:
    京津冀协同创新项目(17YEXTZC00020)

Intelligent Diagnosis of Brain Tumor with MRI Based on Ensemble Learning

LI Xinrui1, ZHANG Yanfang2, KANG Xiaodong1, LI Bo3, HAN Junling1,4   

  1. 1 School of Medical Imaging,Tianjin Medical University,Tianjin 300202,China
    2 Chongqing University Qianjiang Hospital,Chongqing 409000,China
    3 Tianjin Third Central Hospital,Tianjin 300170,China
    4 Tianjin First Central Hospital,Tianjin 300192,China
  • Published:2024-06-06
  • About author:LI Xinrui,born in 2002,undergraduate.Her main research interest is medical image processing.
    ZHANG Yanfang,born in 1975,bachelor.Her main research interests include imaging research of cardiovascular and cerebrovascular diseases.
  • Supported by:
    Beijing-Tianjin-Hebei Collaborative Innovation Project(17YEXTZC00020).

摘要: 脑肿瘤是由于颅脑内部组织出现癌变而导致的高危害疾病,及时诊断脑肿瘤对其治疗及预后至关重要。现阶段不同的网络模型有不同的分类效果,单一的网络模型很难在多个评价指标上有突出的表现。文中基于集成学习提出了一种分类功能强大的Treer-Net模型,它是以TransFG,ResNet50,EfficientNet B4,EfficientNet B7和ResNeXt101为基础模型,通过集成学习的加权平均的结合策略得到的模型。文中将其在脑肿瘤MRI二分类、三分类和四分类的公开数据集上训练完成分类任务。实验数据和结果表明,Treer-Net模型在脑肿瘤三分类数据集上的准确率、精确率、召回率和AUC分别高达99.15%,99.16%,99.15%和99.87%,通过对比分析,充分验证了所提的集成学习方法具有精准、快捷的优越性,更适用于临床辅助诊断脑肿瘤。

关键词: 肿瘤, 集成学习, 图像分类, 核磁影像

Abstract: Brain tumors are high-risk diseases caused by cancerous changes in the internal tissues of the brain,and timely diagnosis of brain tumors is crucial for their treatment and prognosis.At present,different network models have different classification effects,and a single network model is difficult to achieve outstanding performance on multiple evaluation indicators.This paper proposes a Treer-Net model with powerful classification function based on ensemble learning,which is based on TransFG,ResNet50,EfficientNet B4,EfficientNet B7 and ResNeXt101,and is obtained through the weighted average combination strategy of ensemble learning.This paper trains it to complete the classification tasks on the publicly available datasets of brain tumor MRI binary,tertiary and quaternary classifications.Experimental data and results show that the accuracy,precision recall and AUC of the Treer-Net model in the three classification datasets of brain tumors are up to 99.15%,99.16%,99.15% and 99.87% respectively.Through comparative analysis,it fully verifies that the ensemble learning method in this paper has the advantages of accuracy and speed,and is more suitable for clinical auxiliary diagnosis of brain tumors.

Key words: Brain tumor, Ensemble learning, Image classification, Magnetic resonance imaging

中图分类号: 

  • TP391
[1]LIU M H,ZHANG G.Research progress in brain tumor ima-ging based on deep learning[J].Imaging Technology,2021,33(5):50-55.
[2]SUN F Q,CUI Z Q,ZOU P,et al.Brain tumor segmentation algorithm based on multi-scale features[J].Computer Science,2022,49(S1):12-16,73.
[3]BUCHLAK Q D,ESMAILI N,LEVEQUE J C,et al.Machine learning applications to neuroimaging for glioma detection and classification:An artificial intelligence augmented systematic review[J].J Clin Neurosci,2021,89:177-198.
[4]ZHENG L Y.Research and Implementation of Brain Tumor Image Classification Based on Deep Learning[D].Chengdu:University of Electronic Science and Technology of China,2021.
[5]CHEN J H J N,LIU S,KORTYLEWSKI A,et al.TransFG:A Transformer Architecture for Fine-grained Recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:852-860.
[6]AYADI W,ELHAMZI W,CHARFI I,et al.Deep CNN forBrain Tumor Classification[J].Neural Processing Letters,2021,53(1):671-700.
[7]ALI K,SHAIKH Z A,KHAN A A,et al.Multiclass skin cancer classification using EfficientNets-a first step towards preventing skin cancer[J].Neuroscience Informatics,2022,2(4):100034.
[8]JIANG L Q,NING C Y,LI J Y.Glioma classification framework based on SE-ResNeXt network and its optimization[J].IET Image Processing,2022,16(2):596-605.
[9]WANG X,YI J,LI Y.Application of Fusion Model of 3D-ResNeXt and Bi-LSTM Network in Alzheimer’s Disease Classification[C]//2022 6th International Conference on Communication and Information Systems(ICCIS).2022:136-140.
[10]GONG A,YAO X J,DU B,et al.Dermatoscope image classification method based on Ensemble learning and Generative adversarial network[J].Science,Technology and Engineering,2021,21(3):1071-1076.
[11]JU C,BIBAUT A,VAN DER LAAN M.The relative performance of ensemble methods with deep convolutional neural networks for image classification[J].Journal of Applied Statistics,2018,45(15):2800-2818.
[12]MÜLLER D,SOTO-REY I,KRAMER F. Multi-disease detection in retinal imaging based on ensembling heterogeneous deep learning models[M]//German Medical Data Sciences 2021:Digital Medicine:Recognize-Understand-Heal.IOS Press,2021:23-31.
[13]GANAIE M A,HU M,MALIK A,et al.Ensemble deep learning:A review[J].Engineering Applications of Artificial Intelligence,2022,115:105151.
[14]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[15]GU R F,LI X,REN W M.Research on Image ClassificationBased on ResNet50 Improved Model[J].Modern Electronic Technology,2023,46(4):107-112.
[16]TAN M,LE Q.Efficientnet:Rethinking model scaling for convolutional neural networks[C]//International Conference on Machine Learning.2019:6105-6114.
[17]XIE S,GIRSHICK R,DOLLÁR P,et al.Aggregated residual transformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1492-1500.
[18]JIANG L Q.Research on Brain Tumor Image ClassificationTechnology Based on Deep Learning[D].Changchun:Changchun University of Science and Technology,2022.
[19]SAHAAI M B,JOTHILAKSHMI G,RAVIKUMAR D,et al.ResNet-50 based deep neural network using transfer learning for brain tumor classification[C]//AIP Conference Proceedings.2022.
[20]LATIF G,BEN BRAHIM G,ISKANDAR D A,et al.GliomaTumors’ classification using deep-neural-network-based features with SVM classifier[J].Diagnostics,2022,12(4):1018.
[21]KHAN A R,KHAN S,HAROUNI M,et al.Brain tumor segmentation using K-means clustering and deep learning with synthetic data augmentation for classification[J].Microscopy Research and Technique,2021,84(7):1389-1399.
[22]YAHYAOUI H,GHAZOUANI F,FARAH I R.Deep learning guided by an ontology for medical images classification using a multi modal fusion[C]//2021 International Congress of Advanced Technology and Engineering(ICOTEN).2021:1-6.
[23]BHATELE K R,BHADAURIA S S.Machine learning application in Glioma classification:review and comparison analysis[J].Archives of Computational Methods in Engineering,2022,29(1):247-274.
[24]MURTHY M Y B,KOTESWARARAO A,BABU M S.Adaptive fuzzy deformable fusion and optimized CNN with ensemble classification for automated brain tumor diagnosis[J].Biomedical Engineering Letters,2022,12(1):37-58.
[25]DEEPAK S,AMEER P.Brain tumor classification using deep CNN features via transfer learning[J].Computers in Biology and Medicine,2022,12(1):37-58.
[26]GHASSEMI N,SHOEIBI A,ROUHANI M.Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images[J].Biomedical Signal Processing and Control,2020,57:101678.
[27]ÖZKARACA O,BAǴRIAÇIK O,GÜRÜLER H,et al.Multiple Brain Tumor Classification with Dense CNN Architecture Using Brain MRI Images[J].Life,2023,13(2):349.
[28]ALI R,AL-JUMAILI S,DURU A D,et al.Classification ofBrain Tumors using MRI images based on Convolutional Neural Network and Supervised Machine Learning Algorithms[C]//2022 International Symposium on Multidisciplinary Studies and Innovative Technologies(ISMSIT).2022:822-827.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!