计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240200097-6.doi: 10.11896/jsjkx.240200097
范学晶, 薛笑荣, 杜意超
FAN Xuejing, XUE Xiaorong, DU Yichao
摘要: 由于遥感成像技术条件的限制,难以同时获得既有高时间分辨率又具有高空间分辨率序列的遥感影像,通过时空融合技术可以生成同时具有高时间和高空间分辨率的遥感图像。近年来,时空融合方法层出不穷,这些方法效果良好,但在特征提取有效信息方面仍有不足。针对此问题,提出了一种基于双重注意力机制改进的深度学习模型(ADCSTFN),使得模型在全局的保留和细节场景的重建能力都得到了提高。在实验中,采用Landsat和MODIS数据为研究对象,使用两个开源数据集和一个本地数据集对该方法进行测试,并与4种常用的时空融合方法进行比较。实验结果表明,文中提出的残差网络和双重注意力机制方法能更好地提取图像的有效信息,使用深监督损失函数缓解反向传播时梯度消失的问题,优化了学习过程,使得融合后的效果有了明显的提高。
中图分类号:
[1]GONG P.Some Frontier Issues in Remote Sensing Science and Technology[J].Journal of Remote Sensing,2009,13(1):13-23. [2]TONG Q,ZHANG B,ZHANG L.Frontier Advances in Hyperspectral Remote Sensing in China[J].Journal of Remote Sensing,2016,20(5):689-707. [3]WANG S.Research on Spatiotemporal Fusion Algorithms Based on Multi-source High-Resolution Satellite Remote Sensing Images [D].Beihua Aerospace Industry College,2023. [4]LI C,SONG H,ZHANG K,et al.Conditional Generative Adversarial Networks for Spatiotemporal Fusion of Remote Sensing Images[J].Journal of Image and Graphics,2021,26(3):714-726 [5]SUN Y.Research on Spatiotemporal Fusion Algorithms for Remote Sensing Data-A Case Study with Landsat and MODIS Data [C]//China University of Mining and Technology,2019. [6]HUANG B,ZHAO Y.Current Status and Prospects of Spatio-temporal Fusion Research on Multi-source Satellite Remote Sensing Images[J].Journal of Geomatics,2017,46(10):1492-1499. [7]ZHANG H K,HUANG B,ZHANGM,et al.A generalization of spatial andtemporal fusion methods for remotelysensed surface parameters[J].International Journal of Remote Sensing,2015,36(17):4411-4445. [8]SHEVYRNOGOV A,TREFOIS P,VYSOTSKAYA G.Multi-satellite Data Merge to Combine NOAA AVHRR Efficiency with Landsat-6 MSS Spatial Resolutionto StudyVegetationDynamics[J].Advances in Space Research,2000,26(7):1131-1133. [9]GU X H,HAN L J,WANG J A.Remote Sensing Estimation of Corn Area by Wavelet Fusion of Medium and Low Resolution Images[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(3):203-209. [10]ZHU X L,HELMER E H,GAO F,et al.A flexible spatiotemporal meth-od for fusing satellite images with different resolutions[J].Remote Sensing of Environment,2016,172:165-177. [11]GAO F,MASEK J,SCHWALLER M,et al.On the blending of the Landsat and MODIS surface reflectance:predicting daily Landsat surlace reflectance[C]//IEEE Transactions on Geoscience and Remote Sensing.2006:2207-2218. [12]ZHU X,CHEN J,GAO F.An enhanced spatial and temporaladaptive reflectance fusion model for complex heterogene?ous regionsJ7.Remote Sensing of Environment,2010,114(11);2610-2623. [13]BUSETTO L,MERONI M,COLOMBO R.Combining medium and coarsespatial resolution satellite data to improve the estimation of sub-pixel NDVI time series[J].Remote Sensing of Environment,2008,112(1):118-131. [14]ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference on Curves and Surfaces.Avignon,France:Springer,2012:711-730. [15]SONG H,HUANG B.Spatiotemporal Satellite Image FusionThrough One-Pair Image Learning[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(4):1883-1896. [16]SONG H,LIU Q,WANG G.Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2018,11(3):821-829. [17]HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2015:770-778. [18]LI Y,LI J,HE L.Single-sample-based Convolutional NeuralNetwork for Spatiotemporal Fusion of Remote Sensing Images[J].Journal of Remote Sensing,2022,26(8):1614-1623. [19]SUN Z,OUYANG X,LI H,et al.Spatiotemporal Data Fusion Model of NDVI Based on Deep Learning[J].Journal of Resources and Ecology,2024,15(1):214-226. [20]TAN Z Y,YUE P,DI L P,et al.Deriving high spatiotemporal remote sensing images using deep convolutional network[J].Remote Sensing,2018,10(7):1066. [21]FU J,LIU J,TIAN H,et al.Dual Attention Network for Scene Segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2018:3141-3149. |
|