计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240300013-7.doi: 10.11896/jsjkx.240300013
王琼1, 卢钺2, 刘顺2, 李清涛2, 刘洋2, 王洪彪1, 刘卫亮3
WANG Qiong1, LU Yue2, LIU Shun2, LI Qingtao2, LIU Yang2, WANG Hongbiao1, LIU Weiliang3
摘要: 电动车充电行为的非完全竞争性和不完全信息性,以及电力系统的非线性和不确定性,导致电网实时定价问题的建模和求解及其复杂。现有解决方案往往将其建模为一个带约束的优化问题,并且认为效用函数对于电网是已知的,忽略了现实中存在的信息不完全性。为了克服这一局限,在效用函数参数未知的情况下,提出了一种基于双层优化的电动车与电网实时协同定价机制。该机制的创新性在于能够更好地反映电动车充电市场的真实动态;同时,引入电网的潮流方程来反映电网的实时负载。在该模型中,上层模型最大化电网供电商的收益,同时尽可能减小电网的负载压力;下层模型优化电动车充电行为,每一辆电动车的目标是最小化自身的充电成本。通过与固定电价以及峰谷电价情况进行对比,实验仿真数据揭示了所提机制能够更好地平衡电网以及电动车的收益并且增加两者总收益,同时减小电网的负载。
中图分类号:
[1]WANG Y,YANG Z F,YU J,et al.Pricing in non-convex electricity markets with flexible trade-off of pricing properties[J].Energy,2023,274:127382. [2]FOGSTAD M D,KJERSTI B,SIGURD B,et al.Local electricitymarket pricing mechanisms' impact on welfare distribution,privacy and transparency[J].Applied Energy,2023,341:121112. [3]AMOUNTZIAS C,DAGDEVIREN H,PATOKOS T.Pricingdecisions and market power in the UK electricity market:A VECM approach[J].Energy Policy,2017,108:467-473. [4]DEY B,BHATTACHARYYA B.Comparison of various elec-tricity market pricing strategies to reduce generation cost of a microgrid system using hybrid WOA-SCA[J].Evolutionary Intelligence,2021,15(3):1587-1604. [5]SHIRI A,AFSHAR M,RAHIMI-KIAN A,et al.Electricityprice forecasting using Support Vector Machines by considering oil and natural gas price impacts[C]//IEEE International Conference on Smart Energy Grid Engineering.IEEE,2015. [6]HOGAN W W.Electricity market design:Multi-interval pricing models[J].Harvard University,2002. [7]SAMADI P,MOHSENIAN-RAD A H,SCHOBER R,et al.Op-timal Real-Time Pricing Algorithm Based on Utility Maximization for Smart Grid[C]//2010 First IEEE International Confe-rence on Smart Grid Communications(SmartGridComm).IEEE,2010. [8]SONG X,QU J.An improved real-time pricing algorithm basedon utility maximization for smart grid[C]//Proceeding of the 11th World Congress on Intelligent Control and Automation.2023. [9]TARASAK P.Optimal real-time pricing under load uncertainty based on utility maximization for smart grid[C]//IEEE International Conference on Smart Grid Communications.IEEE,2011. [10]AHMADZADEH S,YANG K.Optimal Real Time PricingBased on Income Maximization for Smart Grid[C]//IEEE International Conference on Computer & Information Technology Ubiquitous Computing & Communications Dependable.IEEE,2015. [11]LI W,BECKER D M.Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling[J].arXiv:2101.05249,2021. [12]HOGAN W W.Electricity market design:Market models for coordination and pricing[J/OL].Energy Information Administration,2008.https://www.eia.gov/conference/2008/conf_pdfs/Tuesday/Hogan.pdf.https://www.eia.gov/conference/2008/conf_pdfs/Tuesday/Hogan.pdf. [13]LI X G,YAN M S,XIE X Y.Inducing Mechanism of Three Pricing Methods on Bidding Strategies of Power Generation Companies[J].Automation of Electric Power Systems,2003(5):20-25. [14]LUO Y H,XING L D,WANG Q,et al.Least Squares Estimation of Parameter in Peak-Valley Time-of-Use Electricity Price User Response Model[J].East China Electric Power,2009,37(1):67-69. [15]YUAN G X,GAO Y,WANG H J.Real-time Electricity PriceAlgorithm for Smart Grid Based on Utility Classification[J].Journal of University of Shanghai for Science and Technology,2020,42(1):29-35. [16]HUANG H T,HU X Y,LI X ,et al.Practical Incentive-based Optimal Compensation Pricing Model for Interruptible Loads[J].Power System Technology,2014,38(8):2149-2154. [17]ZHANG L Z,LI Y A,LI G H,et al.Discussion on the Reactive Power Pricing Method in Power Generation Side Electricity Market[J].Electric Power in China,2002(1):32-36. [18]LUO Y H,XING L D,WANG Q,et al.Overview of User Response Modeling and Pricing Decision in Peak-Valley Time-of-Use Electricity Price[J].East China Electric Power,2008(6):24-27. [19]DONG L,TU S Q,LI Y,et al.Dynamic Pricing and EnergyManagement of Multi-Virtual Power Plants Based on Meta-model Optimization Algorithm in Master-Slave Game[J].Power System Technology,2020,44(3):973-983. [20]ZENG Q Y.Pricing Mechanism of Wholesale Electricity Market with Demand-side Participation[J].Power System Technology,2004(17):6-10. [21]SHU Z,MEI S,WANG P W.The Game-Theoretic Approach to Pricing in China's Semi-Deregulated Electricity Market[J].Advanced Materials Research,2013,2694:805-806. [22]JI K,YING L.Network utility maximization with unknown uti-lity functions:A distributed,data-driven bilevel optimization approach[J].arXiv:2301.01801,2023. [23]JI K,YANG J,LIANG Y.Bilevel optimization:Convergenceanalysis and enhanced design[C]//International Conference on Machine Learning.PMLR,2021:4882-4892. [24]LIU R,LIU X,ZENG S,et al.Value-function-based sequential minimization for bi-level optimization[J].arXiv:2110.04974,2021. [25]LIU R,LIU X,YUAN X,et al.A value-function-based interior-point method for non-convex bi-level optimization[C]//International Conference on Machine Learning.PMLR,2021:6882-6892. [26]CLEMENT-NYNS K,HAESEN E,DRIESEN J.The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J].IEEE Transactions on Power Systems,2009,25(1):371-380. [27]KEMPTON W,TOMIĆ J.Vehicle-to-grid power implementa-tion:From stabilizing the grid to supporting large-scale renewa-ble energy[J].Journal of Power Sources,2005,144(1):280-294. [28]LOW S H.Convex relaxation of optimal power flow-Part I:Formulations and equivalence[J].IEEE Transactions on Control of Network Systems,2014,1(1):15-27. [29]GAN L,TOPCU U,LOW S H.Optimal decentralized protocol for electric vehicle charging[J].IEEE Transactions on Power Systems,2012,28(2):940-951. [30]FARIVAR M,LOW S H.Branch flow model:Relaxations and convexification-Part I[J].IEEE Transactions on Power Systems,2013,28(3):2554-2564. [31]WANG D,TURITSYN K,CHERTKOV M.DistFlow ODE:Modeling,analyzing and controlling long distribution feeder[C]//2012 IEEE 51st IEEE Conference on Decision and Control(CDC).IEEE,2012:5613-5618. [32]CHAKRABARTI A,HALDER S.Power system analysis:ope-ration and control[M].PHI Learning Pvt.Ltd.,2022. [33]MENG F L,ZENG X J.A Stackelberg game-theoretic approach to optimal real-time pricing for the smart grid[J].Soft Computing,2013,17:2365-2380. [34]YU M,HONG S H.A real-time demand-response algorithm for smart grids:A stackelberg game approach[J].IEEE Transactions on Smart Grid,2015,7(2):879-888. [35]WANG Y,MA Z M,TAN Y K,et al.Day-ahead power market design and market simulation in Guangdong province[J].Power Demand Side Management,2018,20(1):10-14. [36]WEI X M,YU K,CHEN X Y,,et al.Analysis of power large user segmentation based on Affinity propagation and K-means algorithm[J].Power Demand Side Management,2018,20(1):15-19,35. [37]ZHOU L,WU H,JI W L,et al.Vulnerability pre-assessmentmethod for microgrid[J].Power Demand Side Management,2018,20(1):20-24. |
|