计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 110-118.doi: 10.11896/jsjkx.240400093
郝佳辉, 万源, 张宇航
HAO Jiahui, WAN Yuan, ZHANG Yuhang
摘要: 图神经网络是一种强大的学习图数据的模型,通过节点信息嵌入和图卷积运算实现图结构数据的表示。图数据中节点的结构信息和节点的位置信息对获取图特征至关重要,但现有的图神经网络同时捕获位置信息和结构信息的表达能力有限。对此,提出了一种新的图神经网络——融合位置和结构信息的图神经网络(Positional and Structural Information with Graph Neural Networks,PSI-GNN)。PSI-GNN的核心思想在于利用编码器获取节点的位置和结构信息,并将这些信息特征嵌入到网络中。通过在网络中更新和传递这两种信息,PSI-GNN实现了对位置和结构信息的有效融合与利用,为解决上述问题提供了有效的解决方案。同时,为应对不同类型的图学习任务,PSI-GNN给予位置和结构信息以不同的权重来应对不同的下游任务。为了验证PSI-GNN的有效性,在多个基准图数据集上进行了实验。实验结果表明,PSI-GNN在节点级任务上最高提升了约14%,在图级任务上最高提升了约35%,验证了PSI-GNN在同时捕获位置和结构信息方面的有效性。
中图分类号:
[1]ZHANG P,CHEN J,CHE C,et al.IEA-GNN:Anchor-aware Graph Neural Network Fused with Information Entropy for Node Classification and Link Prediction[J].Information Sciences,2023,634:665-676. [2]ZOU M,GAN Z,CAO R,et al.Similarity-navigated Graph Neural Networks for Node Classification[J].Information Sciences,2023,633:41-69. [3]DENG X,SUN J,LU J.Graph Neural Network-based Efficient Subgraph Embedding Method for Link Prediction in Mobile Edge Computing[J].Sensors,2023,23:4936. [4]WU F,JING X Y,WEI P,et al.Semi-supervised Multi-viewGraph Convolutional Networks with Application to Webpage Classification[J].Information Sciences,2022,591:142-154. [5]BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral Networks and Locally Connected Networks on Graphs[C]//International Conference on Learning Representations.Banff,Canada:OpenReview.net,2014:1-14. [6]GILMER J,SCHOENHOLZ S S,RILEY P F,et al.Neural Message Passing for Quantum Chemistry[C]//International Confe-rence on Machine Learning.Sydney,Australia:ACM,2017:1263-1272. [7]XU K,HU W,LESKOVEC J,et al.How Powerful are GraphNeural Networks?[C]//International Conference on Learning Representations.Vancouver,Canada:OpenReview.net,2018:1-17. [8]MURPHY R L,SRINIVASAN B,RAO V,et al.Relational Pooling for Graph Representations[C]//International Conference on Machine Learning.Los Angeles,USA:ACM,2019:4663-4673. [9]YOU J X,YING R X,LESKOVEC J.Position-aware GraphNeural Networks[C]//International Conference on Machine Learning.Los Angeles,USA:ACM,2019:7134-7143. [10]YOU J X,GOMES-SELMAN J,YING R,et al.Identity-aware Graph Neural Networks[C]//AAAI Conference on Artificial Intelligence.Vancouver,Canada:AAAI,2021:10737-10745. [11]CHEN Y,YOU J,HE J,et al.SP-GNN:Learning Structure and Position Information from Graphs[J].Neural Networks,2023,161:505-514. [12]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[C]//International Conference on Learning Representations.Vancouver,Canada:OpenReview.net,2018:1-12. [13]HAMILTON W L,YING Z,LESKOVEC J.Inductive Repre-sentation Learning on Large Graphs[C]//Annual Conference on Neural Information Processing Systems.Long Beach,USA:MIT Press,2017:1025-1035. [14]CHEN M,WEI Z,HUANG Z,et al.Simple and Deep Graph Convolutional Networks[C]//International Conference on Machine Learning.Vienna,Austria:ACM,2020. [15]FAN X,GONG M,WU Y,et al.Propagation Enhanced Neural Message Passing for Graph Representation Learning[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(2):1952-1964. [16]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is All you Need[C]//Annual Conference on Neural Information Processing Systems.Long Beach,USA:MIT Press,2017:5998-6008. [17]LI P,WANG Y,WANG H,et al.Distance Encoding:Design Provably More Powerful Neural Networks for Graph Representation Learning[C]//Annual Conference on Neural Information Processing Systems.Vancouver,Canada:MIT Press,2020:4465-4478. [18]NISHAD S,AGARWAL S,BHATTACHARYA A,et al.GraphReach:Position-aware Graph Neural Network using Reachability Estimations[C]//International Joint Conference on Artificial Intelligence.Montréal,Canada:Morgan Kaufmann,2021:1527-1533. [19]DWIVEDI V P,JOSHI C K,LAURENT T,et al.Benchmarking Graph Neural Networks[J].Journal of Machine Learning Research,2023,24(43):1-48. [20]WANG D,CUI P,ZHU W.Structural Deep Network Embedding[C]//ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining.San Francisco,USA:ACM,2016:1225-1234. [21]RIBEIRO L F R,SAVERESE P H P,FIGUEIREDO D R.struc2vec:Learning Node Representations from Structural Identity[C]//ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining.Halifax,Canada:ACM,2017:385-394. [22]BAI W,GUO C.Recommendation Based on Graph Neural Network with Structural Identity[C]//International Conference on Machine Learning.Baltimore,USA:ACM,2022:127-131 [23]DWIVEDI V,LUU A,LAURENT T,et al.Graph Neural Networks with Learnable Structural and Positional Representations[C]//International Conference on Learning Representations.Virtual:OpenReview.net,2022:1-25. [24]YAN Y,HASHEMI M,SWERSKY K,et al.Two Sides of the Same Coin:Heterophily and Oversmoothing in Graph Convolutional Neural Networks[C]//International Conference on Data Mining.Orlando,USA:IEEE,2022:1287-1292. [25]OU M,CUI P,PEI J,et al.Asymmetric Transitivity Preserving Graph Embedding[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco,USA:ACM,2016:1225-1234. [26]SEN P,NAMATA G,BILGIC M,et al.Collective Classification in Network Data[J].AI Magazine,2008,29(3):93-106. [27]HU W,FEY M,ZITNIK M,et al.Open Graph Benchmark:Datasets for Machine Learning on Graphs[C]//Annual Conference on Neural Information Processing Systems.Vancouver,Canada:MIT Press,2020:4465-4478. [28]IRWIN J J,STERLING T,MYSINGER M M,et al.ZINC:A Free Tool to Discover Chemistry for Biology[J].Journal of Chemical Information and Modeling,2012,52(7):1757-1768. [29]ROZEMBERCZKI B,KISS O,SARKAR R.Karate Club:AnAPI Oriented Open-source Python Framework for Unsupervised Learning on Graphs[C]//International Conference on Information and Knowledge Management.Los Angeles,Electr Network,2020:3125-3132. [30]BRESSON X,LAURENT T.Residual Gated Graph ConvNets[J].arXiv:1711.07553,2018. [31]KIPF T,WELLING M.Semi-Supervised Classification withGraph Convolutional Networks[C]//International Conference on Learning Representations.Toulon,France:OpenReview.net,2017:1-14. [32]DWIVEDI V,BRESSON X.A Generalization of TransformerNetworks to Graphs[J].arXiv:2012.09699v2,2021. [33]KREUZER D,BEAINI D,HAMILTON W L,et al.Rethinking Graph Transformers with Spectral Attention[C]//Annual Conference on Neural Information Processing Systems.Sydney,Australia:MIT Press,2021:1-12. [34]YING C,CAI T,LUO S J,et al.Do Transformers Really Perform Badly for Graph Representation[C]//Annual Conference on Neural Information Processing Systems.Sydney,Australia:MIT Press,2021:1-19. [35]LI G,XIONG C,THABET A,et al.DeeperGCN:All You Need to Train Deeper GCNs[J].arXiv:2006.07739,2022. [36]CORSO G,CAVALLERI L,BEAINI D,et al.Principal Neighbourhood Aggregation for Graph Nets[C]//Annual Conference on Neural Information Processing Systems.Vancouver,Canada:MIT Press,2020:13260-13271. [37]BEAINI D,PASSARO S,LÉTOURNEAU V,et al.Directional Graph Networks[C]//International Conference on Machine Learning.PMLR,2021:748-758. [38]TIAN Y,ZHANG C,GUO Z,et al.Learning MLPs on Graphs:A Unified View of Effectiveness,Robustness,and Efficiency[C]//International Conference on Learning Representations.Kigali,Africa:OpenReview.net,2023:1-12. [39]MARTINKUS K,PAPP P,SCHESCH B,et al.Agent-basedGraph Neural Networks[C]//International Conference on Learning Representations.Kigali,Africa:OpenReview.net,2023:1-32. [40]LIM D,ROBINSON J,ZHAO L,et al.Sign and Basis Invariant Networks for Spectral Graph Representation Learning[C]//International Conference on Learning Representations.Kigali,Africa:OpenReview.net,2023:1-42. [41]GRAVINA A,BACCIU D,GALLICCHIO C.Anti-SymmetricDGN:A Stable Architecture for Deep Graph Networks[C]//International Conference on Learning Representations.Kigali,Africa:OpenReview.net,2023:1-19. |
|