计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240500140-7.doi: 10.11896/jsjkx.240500140
程艳1, 何慧娟2, 陈彦滢2, 姚楠楠2, 林国波2
CHENG Yan1, HE Huijuan2, CHEN Yanying2, YAO Nannan2, LIN Guobo2
摘要: 卷积神经网络在计算机视觉领域具有重要作用,然而其黑盒特性使人们理解其决策理由变得困难,严重阻碍了其在某些安全领域的应用。传统的类激活映射(Class Activation Mapping,CAM)算法通常受限于深层神经元的可解释性,对浅层神经元的解释能力较弱且存在较多噪声。为了应对这一挑战,提出一种可解释浅层的类激活映射算法,并生成细粒度的解释。该算法基于相关性传播理论,考虑相邻层之间的相关性,得到层间相关性权重,并将应用了空间权重的特征图作为掩码,与层间相关性权重相乘,从而实现浅层解释。实验结果表明,所提算法与解释浅层最优的LayerCAM相比,卷积神经网络每层生成的类激活图的删除插入测试综合评分在ILSVRC2012 val数据集上最高提高了2.73,最低提高了0.24,在CUB-200-2011数据集上最高提高了1.31,最低提高了0.38。
中图分类号:
[1]CHENG M M,JIANG P T,HAN L H,et al.Deeply Explain CNN via Hierarchical Decomposition[J].arXiv:2201.09205,2022. [2]SUN H,SHI Y L,WANG R.Research on Class ActivationMapping Algorithm from Coarse to Fine Based on Comparative Hierarchical Correlation Propagation [J].Journal of Electronics and Information Science,2023,45(4):1454-1463. [3]ZEILER M D,FERGUS R.Visualizing and understanding convo-lutional networks[C]//13th European Conference on ComputerVision.Zurich,Switzerland,2014:818-833. [4]PETSIUK V,DAS A,SAENKO K.Rise:Randomized inputsampling for explanation of black-box models[C]//British Machine Vision Conference(BMVC).2018. [5]AGARWAL C,SCHONFELD D,NGUYEN A.Removing input features via a generative model to explain their attributions to classifier’s decisions[J].arXiv:1910.04256,2019. [6]CHANG C H,CREAGER E,GOLDENBERG A,et al.Explaining image classifiers by counterfactual generation[C]//Proceedings of the 7th International Conference on Learning Representations.New Orleans,USA,2019. [7]SI N W,ZHANG W L,QU D,et al.A Review of Convolutional Neural Network Representation Visualization Research [J].Journal of Automation,2022,48(8):1890-1920. [8]BAEHRENS D,SCHROETER T,HARMELING S,Kawanabe M,Hansen K,Müller K R.How to explain individual classification decisions.[J] Journal of Machine Learning Research,2010,11(61):1803-1831. [9]SIMONYAN K,VEDALDI A,ZISSERMAN A.Deep insideconvolutional networks:Visualising image classification models and saliency maps[J].arXiv:1312.6034,2013. [10]CHENG L,FANG P,LIANG Y,et al.TSGB:Target-Selective Gradient Backprop for Probing CNN Visual Saliency[J].IEEE transactions on image processing:a publication of the IEEE Signal Processing Society,2022,31:2529-2540. [11]GU J,YANG Y,TRESP V.Understanding individual decisions of cnns via contrastive backpropagation[C]//Proceedings of the 14th Asian Conference on Computer Vision.Perth,Australia,2018:119-134. [12]BACH S.Layer-Wise Relevance Propagation for Deep NeuralNetwork Architectures[C]//ICISA.Singapore:Springer,2016:913-922. [13]ZHOU B L,KHOSLA A,LAPEDRIZA A,et al.Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016. [14]SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2017. [15]CHATTOPADHAY A,SARKAR A,HOWLADERP,et al.Grad-cam++:Generalized gradient-based visual explanations for deep convolutional networks[C]//2018 IEEE Winter Conference on Applications of Computer Vision(WACV).IEEE,2018:839-847. [16]RAMASWAMY H G.Ablation-cam:Visual explanations fordeep convolutional network via gradient-free localization[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2020:983-991. [17]SMILKOVD,THORAT N,KIM B,et al.SmoothGrad:removing noise by adding noise[J].arXiv:1706.03825,2017. [18]SATTARZADEH S,SUDHAKAR M,PLATANIOTISK N,et al.Integrated grad-cam:Sensitivity-aware visual explanation of deep convolutional networks via integrated gradient-based scoring[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2021).IEEE,2021:1775-1779. [19]LUCAS M,LERMA M,FURST J,et al.RSI-Grad-CAM:Visual explanations from deep networks via Riemann-Stieltjes integratedgradient-based localization[C]//International Symposium on Visual Computing.Cham:Springer International Publishing,2022:262-274. [20]FU R,HU Q,DONG X,et al.Axiom-based Grad-CAM:Towards Accurate Visualization and Explanation of CNNs(BMVC2020 Oral)[J].arXiv:2008.02312,2020. [21]WANG H F,WANG Z F,DU M N,et al.Score-cam:Score-weighted visual explanations for convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,Workshop on Fair,Data Efficient and Trusted Computer Vision.2020. [22]ZHANG Q,RAO L,YANG Y.Group-cam:Group score-weighted visual explanations for deep convolutional networks[J].ar-Xiv:2103.13859,2021. [23]FENG Z,JI H,DAKOVIC M,et al.Cluster-CAM:Cluster-Weighted Visual Interpretation of CNNs’ Decision in Image Classification[J].arXiv:2302.01642,2023. [24]JIANG P T,ZHANG C B,HOU Q,et al.LayerCAM:Exploring Hierarchical Class Activation Maps for Localization[J].IEEE Transactions on Image Processing,2021,30:5875-5888. [25]LEE J R,KIM S,PARK I,EO T,et al.Relevance-CAM:Your Model Already Knows Where to Look[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR 2021).Nashville,TN,USA,2021:14939-14948. [26]GU J,YANG Y,TRESP V.Understanding individual decisions of cnns via contrastive backpropagation[C]//Proceedings of the 14th Asian Conference on Computer Vision.Perth,Australia.2018:119-134. [27]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-252. [28]ADEBAYO J,GILMER J,MUELLY M,et al.Sanity checks for saliency maps[C]//Advances in Neural Information Processing Systems.2018:9505-9515. |
|