计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240600020-10.doi: 10.11896/jsjkx.240600020
陈祥龙1,2, 李海军3
CHEN Xianglong1,2, LI Haijun3
摘要: 本文提出了一种新颖的深度学习模型——LST-ARBunet,以解决肺部计算机断层扫描(CT)图像中肺结节的精确分割问题。在肺结节检测领域,受结节尺寸微小、形态多样及与周围组织相似性高等因素影响,技术实现难度大。LST-ARBunet模型的主要创新在于在下采样的过程中融入Swin-Transformer结构在不同尺度上捕捉肺部影像的特征;对Swin-Transformer结构进行局部卷积前置和共享参数处理来降低模型参数量;在上采样的过程中加入自定义的注意力机制来捕获重要细节特征;并且使用残差瓶颈块(Inverted Residual Blocks)替换普通卷积,对模型进行轻量化。在公开肺结节CT数据集LIDC-IDRI上进行实验,LST-ARBunet展现出了一定的性能提升,交并比(Intersection over Union,IoU)为0.889,平均表面距离(Average Symmetric Surface Distance,ASSD)为1.453,Dice相似系数(Dice Score)为0.884,都超越了消融实验的模型以及ResUnet,PSPNet,DeepLabv3+模型。此外,LST-ARBunet在保持高分割精度的同时,还保持了相对合理的1.3 s推理时间,为临床应用提供了可行的效率平衡。本研究为肺结节分割提供了新的技术途径,未来工作将探索该模型在更多样化的临床数据集上的表现,进一步优化模型效率,并推进其在实际医疗环境中的部署与应用,为肺癌的早期检测与治疗提供强有力的支持。
中图分类号:
[1]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention.Springer,2015:234-241. [2]ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:A nested u-net architecture for medical image segmentation[C]//Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support.Springer,2018:3-11. [3]XIAO X,LIAN S,LUO Z,et al.Weighted res-unet for high-quality retina vessel segmentation[C]//2018 9th International Conference on Information Technology in Medicine and Education(ITME).IEEE,2018:327-331. [4]OKTAY O,SCHLEMPER J,FOLGOC L L,et al.Attention u-net:Learning where to look for the pancreas[J].arXiv:1804.03999,2018. [5]LI X,CHEN H,QI X,et al.H-denseunet:hybrid densely con-nected unet for liver and tumor segmentation from ct volumes[J].IEEE Transactions on Medical Imaging,2018,37(12):2663-2674. [6]ALOM M Z,HASAN M,YAKOPCIC C,et al.Recurrent residual convolutional neural network based on u-net(r2unet) for medical image segmentation[J].arXiv:1802.06955,2018. [7]VALANARASU J M J,SINDAGI V A,HACIHALILOGLU I,et al.Kiu-net:Towards accurate segmentation of biomedical images using over-complete representations[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,2020:363-373. [8]HUANG H,LIN L,TONG R,et al.Unet 3+:A full-scale connected unet for medical image segmentation[C]//2020 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2020).IEEE,2020:1055-1059. [9]WANG X,GIRSHICK R,GUPTA A,et al.Non-local neuralnetworks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7794-7803. [10]HUANG Z,WANG X,HUANG L,et al.Ccnet:Criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:603-612. [11]HOU Q,ZHOU D,FENG J.Coordinate attention for efficient mobile network design[J].arXiv:2103.02907,2021. [12]WANG G T,LI W Q,ZULUAGA M A,et al.Interactive Medical Image Segmentation Using Deep Learning With Image-Specific Fine Tuning[J].IEEE Transactions on Medical Imaging,2018,37(7):1562-1573. [13]LI Y,FAN Y.DeepSEED:3D Squeeze-and-Excitation Encoder-Decoder Convolutional Neural Networks for Pulmonary Nodule Detection[C]//IEEE 17th International Symposium on Biomedical Imaging(ISBI 2020).Iowa City,IA,USA,2020:1866-1869. [14]MEI J,CHENG M M,XU G,et al.SANet:A Slice-Aware Network for Pulmonary Nodule Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,44(8):4374-4387. [15]CELAYA A,ACTOR J A,MUTHUSIVARAJAN R,et al.PocketNet:A Smaller Neural Network for Medical Image Analysis[J].IEEE Transactions on Medical Imaging,2023,42(4):1172-1184. [16]ORTEGA-RUÍZ M A,KARABAĞ C,ROMAN-RANGEL E,et al.DRD-UNet,a UNet-Like Architecture for Multi-Class Breast Cancer Semantic Segmentation[J].IEEE Access,2024,12:40412-40424. [17]ARMAND T P T,BHATTACHARJEE S,CHOI H K,et al.Transformers Effectiveness in Medical Image Segmentation:A Comparative Analysis of UNet-Based Architectures[C]//International Conference on Artificial Intelligence in Information and Communication(ICAIIC 2024).IEEE,2024. [18]JIANG W,ZHI L,ZHANG S,et al.A Dual-Branch Framework With Prior Knowledge for Precise Segmentation of Lung Nodules in Challenging CT Scans[J].IEEE Journal of Biomedical and Health Informatics,2024,28(3):1540-1551. [19]NAGHNE R,KAZEMI A,MOGHADDASI H,et al.An Efficient Capsule-based Network for 2D Left Ventricle Segmentation in Echocardiography Images[C]//45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC 2023).Sydney,Australia,2023:1-4. [20]LING Y,WANG Y,DAI W,et al.MTANet:Multi-Task Attention Network for Automatic Medical Image Segmentation and Classification[J].IEEE Transactions on Medical Imaging,2024,43(2):674-685. [21]MASOOD A,NASEEM U,RAZZAK I.Multi-Scale SwinTransformer Enabled Automatic Detection and Segmentation of Lung Metastases Using CT Images[C]//IEEE 20th International Symposium on Biomedical Imaging(ISBI 2023).Cartagena,Colombia,2023:1-5. [22]LIN A,CHEN B,XU J,et al.DS-TransUNet:Dual Swin Transformer U-Net for Medical Image Segmentation[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-15. [23]JI Z L,ZHAO Z H,ZENG X Y,et al.ResDSda_U-Net:A Novel U-Net-Based Residual Network for Segmentation of Pulmonary Nodules in Lung CT Images[J].IEEE Access,2023,11:87775-87789. [24]TANG T,ZHANG R,LIN K,et al.SM-RNet:A Scale-Aware-Based Multiattention-Guided Reverse Network for Pulmonary Nodules Segmentation[J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-14. [25]ASHA V,BHAVANISHANKAR K.Lung Cancer Detection using CT Scans:Image Processing through Deep Learning-A Review[C]//8th International Conference on Communication and Electronics Systems(ICCES 2023).Coimbatore,India,2023:1203-1213. [26]ZANNAH R,BASHAR M,MUSHFIQ R B,et al.SemanticSegmentation on Panoramic Dental X-Ray Images Using U-Net Architectures[J].IEEE Access,2024,12:44598-44612. [27]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[J].arXiv:2103.14030,2021. [28]ZHOU X,ZHOU L,GONG S,et al.Swin Transformer Embedding Dual-Stream for Semantic Segmentation of Remote Sensing Imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2024,17:175-189. [29]LI P,WANG H,WANG Z,et al.Swin Routiformer:Moss Classification Algorithm Based on Swin Transformer With Bi-Level Routing Attention[J].IEEE Access,2024,12:53396-53407. [30]PAN S Y,LIU Y Q,HALEK S,et al.Multi-dimension unified Swin Transformer for 3D Lesion Segmentation in Multiple Anatomical Locations[C]//IEEE 20th International Symposium on Biomedical Imaging(ISBI 2023).Cartagena,Colombia,2023:1-5. [31]PROME T A,JASIM TAHITI T.MobileNetV2 Based Cervical Cancer Classification Using Pap Smear Images[C]//International Conference on Artificial Intelligence,Computer,Data Sciences and Applications(ACDSA 2024).Victoria,Seychelles,2024:1-7. [32]XUE M,GU L.Surgical instrument segmentation method based on improved MobileNetV2 network[C]//6th International Symposium on Computer and Information Processing Technology(ISCIPT 2021).Changsha,China,2021:744-747. [33]HUANG G H,ZHU J W,LI J J,et al.Channel-AttentionU-Net:Channel Attention Mechanism for Semantic Segmentation of Esophagus and Esophageal Cancer[J].IEEE Access,2020,8:122798-122810. [34]QI L,QIN X,GAO F,et al.SAWU-Net:Spatial AttentionWeighted Unmixing Network for Hyperspectral Images[J].IEEE Geoscience and Remote Sensing Letters,2023,20:1-5. [35]HU J,SHEN L,ALBANIE S,et al.Squeeze-and-Excitation Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011-2023. [36]MING Q,XIAO X.Towards Accurate Medical Image Segmentation With Gradient-Optimized Dice Loss[J].IEEE Signal Processing Letters,2024,31:191-195. [37]HO Y,WOOKEY S.The Real-World-Weight Cross-EntropyLoss Function:Modeling the Costs of Mislabeling[J].IEEE Access,2020,8:4806-4813. [38]HAN F F,ZHANG G P,WANG H F,et al.A texture feature analysis for diagnosis of pulmonary nodules using LIDC-IDRI database[C]//2013 IEEE International Conference on Medical Imaging Physics and Engineering.Shenyang,China,2013:14-18. [39]AHMED I,CHEHRI A,JEON G,et al.Automated Pulmonary Nodule Classification and Detection Using Deep Learning Architectures[J].IEEE/ACM Transactions on Computational Biology and Bioinformatics,2023,20(4):2445-2456. [40]HUANG Y,TANG Z,CHEN D,et al.Batching Soft IoU forTraining Semantic Segmentation Networks[J].IEEE Signal Processing Letters,2020,27:66-70. [41]XU T,SUN X,DIAO W,et al.ASSD:Feature Aligned Single-Shot Detection for Multiscale Objects in Aerial Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-17. |
|