计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 119-126.doi: 10.11896/jsjkx.240600043
张悦康1, 折延宏2
ZHANG Yuekang1, SHE Yanhong2
摘要: 分层分类是数据挖掘领域中的一个重要分支,通过挖掘数据之间的信息,将数据有组织地构建为层次结构。然而,层间误差传播是分层分类中一个不可避免的问题。为有效缓解层间误差传播问题,提出一种基于同层类别关联关系的多路径选择的分层分类方法。首先,通过预测类别和真实类别的分布,构造类别之间的相关性矩阵。其次,受点互信息PMI的启发,设计出一种度量同层类别之间的关联程度的方法RPMI,并基于RPMI计算出同层类别之间的关联程度。然后,在层次结构中自上而下地递归使用逻辑回归在每层选择预测类别,并通过选择与预测类别关联程度较大的类别,确定当前层的多个候选类别。最后,使用随机森林从多路径预测的结果中选出最佳预测类别。在5个数据集上对该方法进行评估,证明了其具有较好的分类性能。
中图分类号:
[1]ZHAO T Y,ZHANG B P,HE M,et al.Embedding visual hierarchy with deep networks for large-scale visual recognition[J].IEEE Transactions on Image Processing,2018,27(10):4740-4755. [2]ZHAO H,HU Q H,ZHU P F,et al.A recursive regularization based feature selection framework for hierarchical classification[J].IEEE Transactions on Knowledge and Data Engineering,2019,33(7):2833-2846. [3]FREEMAN C,KULIC D,BASIR O.Feature-selected tree-based classification[J].IEEE Transactions on Cybernetics,2013,43(6):1990-2004. [4]ZHAO H,ZHU P F,WANG P,et al.Hierarchical Feature Selection with Recursive Regularization[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Melbourne:AAAI,2017:3483-3489. [5]ZHU X F,LI X L,ZHANG S C.Block-row sparse multiviewmultilabel learning for image classification[J].IEEE Transactions on Cybernetics,2015,46(2):450-461. [6]AZHAR F,LI C T.Hierarchical relaxed partitioning system for activity recognition[J].IEEE Transactions on Cybernetics,2016,47(3):784-795. [7]FAN J P,ZHANG J,MEI K Z,et al.Cost-sensitive learning of hierarchical tree classifiers for large-scale image classification and novel category detection[J].Pattern Recognition,2015,48(5):1673-1687. [8]GUO S X,ZHAO H,YANG W Y.Hierarchical feature selection with multi-granularity clustering structure[J].Information Sciences,2021,568:448-462. [9]GHAZI D,INKPEN D,SZPAKOWICZ S.Hierarchical versusflat classification of emotions in text[C]//Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text.2010:140-146. [10]WAN C,FREITAS A A.An empirical evaluation of hierarchical feature selection methods for classification in bioinformatics datasets with gene ontology-based features[J].Artificial Intelligence Review,2018,50:201-240. [11]HU Q H,WANG Y,ZHOU Y C,et al.Review of hierarchical learning methods for large-scale classification tasks[J].Chinese Science:Information Science,2018,48(5):487-500. [12]GAO T S,KOLLER D.Discriminative learning of relaxed hierarchy for large-scale visual recognition[C]//2011 International Conference on Computer Vision.IEEE,2011:2072-2079. [13]QU Y Y,LIN L,SHEN F M,et al.Joint hierarchical category structure learning and large-scale image classification[J].IEEE Transactions on Image Processing,2016,26(9):4331-4346. [14]GUO S X,ZHAO H.Hierarchical classification with multi-path selection based on granular computing[J].Artificial Intelligence Review,2021,54(3):2067-2089. [15]ZHENG W J,ZHAO H.Cost-sensitive hierarchical classification via multi-scale information entropy for data with an imbalanced distribution[J].Applied Intelligence,2021,51(8):5940-5952. [16]CHEN Y L,HU H W,TANG K.Constructing a decision tree from data with hierarchical class labels[J].Expert Systems with Applications,2009,36(3):4838-4847. [17]DING C H Q,DUBCHAK I.Multi-class protein fold recognition using support vector machines and neural networks[J].Bioinformatics,2001,17(4):349-358. [18]EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010,88:303-338. [19]DIMITROVSKI I,KOCEV D,LOSKOVSKA S,et al.Hierarchical annotation of medical images[J].Pattern Recognition,2011,44(10/11):2436-2449. [20]WANG Y,HU Q H,ZHOU Y C,et al.Local bayes risk minimization based stopping strategy for hierarchical classification[C]//2017 IEEE International Conference on Data Mining(ICDM).IEEE,2017:515-524. [21]ZHENG W J,ZHAO H.Cost-sensitive hierarchical classification for imbalance classes[J].Applied Intelligence,2020,50(8):2328-2338. [22]KOSMOPOULOS A,PARTALAS I,GAUSSIER E,et al.Evaluation measures for hierarchical classification:a unified view and novel approaches[J].Data Mining and Knowledge Discovery,2015,29:820-865. [23]DEKEL O,KESHET J,SINGER Y.Large margin hierarchicalclassification[C]//Proceedings of the Twenty-first International Conference on Machine Learning.2004. [24]FRIEDMAN M.A comparison of alternative tests of significance for the problem of m rankings[J].The Annals of Mathematical Statistics,1940,11(1):86-92. [25]DUNN O J.Multiple comparisons among means[J].Journal of the American Statistical Association,1961,56(293):52-64. [26]DEMSAR J.Statistical comparisons of classifiers over multiple data sets[J].The Journal of Machine Learning Research,2006,7:1-30. |
|