Computer Science ›› 2025, Vol. 52 ›› Issue (7): 119-126.doi: 10.11896/jsjkx.240600043
• Computer Software • Previous Articles Next Articles
ZHANG Yuekang1, SHE Yanhong2
CLC Number:
[1]ZHAO T Y,ZHANG B P,HE M,et al.Embedding visual hierarchy with deep networks for large-scale visual recognition[J].IEEE Transactions on Image Processing,2018,27(10):4740-4755. [2]ZHAO H,HU Q H,ZHU P F,et al.A recursive regularization based feature selection framework for hierarchical classification[J].IEEE Transactions on Knowledge and Data Engineering,2019,33(7):2833-2846. [3]FREEMAN C,KULIC D,BASIR O.Feature-selected tree-based classification[J].IEEE Transactions on Cybernetics,2013,43(6):1990-2004. [4]ZHAO H,ZHU P F,WANG P,et al.Hierarchical Feature Selection with Recursive Regularization[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.Melbourne:AAAI,2017:3483-3489. [5]ZHU X F,LI X L,ZHANG S C.Block-row sparse multiviewmultilabel learning for image classification[J].IEEE Transactions on Cybernetics,2015,46(2):450-461. [6]AZHAR F,LI C T.Hierarchical relaxed partitioning system for activity recognition[J].IEEE Transactions on Cybernetics,2016,47(3):784-795. [7]FAN J P,ZHANG J,MEI K Z,et al.Cost-sensitive learning of hierarchical tree classifiers for large-scale image classification and novel category detection[J].Pattern Recognition,2015,48(5):1673-1687. [8]GUO S X,ZHAO H,YANG W Y.Hierarchical feature selection with multi-granularity clustering structure[J].Information Sciences,2021,568:448-462. [9]GHAZI D,INKPEN D,SZPAKOWICZ S.Hierarchical versusflat classification of emotions in text[C]//Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text.2010:140-146. [10]WAN C,FREITAS A A.An empirical evaluation of hierarchical feature selection methods for classification in bioinformatics datasets with gene ontology-based features[J].Artificial Intelligence Review,2018,50:201-240. [11]HU Q H,WANG Y,ZHOU Y C,et al.Review of hierarchical learning methods for large-scale classification tasks[J].Chinese Science:Information Science,2018,48(5):487-500. [12]GAO T S,KOLLER D.Discriminative learning of relaxed hierarchy for large-scale visual recognition[C]//2011 International Conference on Computer Vision.IEEE,2011:2072-2079. [13]QU Y Y,LIN L,SHEN F M,et al.Joint hierarchical category structure learning and large-scale image classification[J].IEEE Transactions on Image Processing,2016,26(9):4331-4346. [14]GUO S X,ZHAO H.Hierarchical classification with multi-path selection based on granular computing[J].Artificial Intelligence Review,2021,54(3):2067-2089. [15]ZHENG W J,ZHAO H.Cost-sensitive hierarchical classification via multi-scale information entropy for data with an imbalanced distribution[J].Applied Intelligence,2021,51(8):5940-5952. [16]CHEN Y L,HU H W,TANG K.Constructing a decision tree from data with hierarchical class labels[J].Expert Systems with Applications,2009,36(3):4838-4847. [17]DING C H Q,DUBCHAK I.Multi-class protein fold recognition using support vector machines and neural networks[J].Bioinformatics,2001,17(4):349-358. [18]EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes(VOC) challenge[J].International Journal of Computer Vision,2010,88:303-338. [19]DIMITROVSKI I,KOCEV D,LOSKOVSKA S,et al.Hierarchical annotation of medical images[J].Pattern Recognition,2011,44(10/11):2436-2449. [20]WANG Y,HU Q H,ZHOU Y C,et al.Local bayes risk minimization based stopping strategy for hierarchical classification[C]//2017 IEEE International Conference on Data Mining(ICDM).IEEE,2017:515-524. [21]ZHENG W J,ZHAO H.Cost-sensitive hierarchical classification for imbalance classes[J].Applied Intelligence,2020,50(8):2328-2338. [22]KOSMOPOULOS A,PARTALAS I,GAUSSIER E,et al.Evaluation measures for hierarchical classification:a unified view and novel approaches[J].Data Mining and Knowledge Discovery,2015,29:820-865. [23]DEKEL O,KESHET J,SINGER Y.Large margin hierarchicalclassification[C]//Proceedings of the Twenty-first International Conference on Machine Learning.2004. [24]FRIEDMAN M.A comparison of alternative tests of significance for the problem of m rankings[J].The Annals of Mathematical Statistics,1940,11(1):86-92. [25]DUNN O J.Multiple comparisons among means[J].Journal of the American Statistical Association,1961,56(293):52-64. [26]DEMSAR J.Statistical comparisons of classifiers over multiple data sets[J].The Journal of Machine Learning Research,2006,7:1-30. |
[1] | WU Nannan, GUO Zehao, ZHAO Yiming, YU Wei, SUN Ying, WANG Wenjun. Study on Anomalous Evolution Pattern on Temporal Networks [J]. Computer Science, 2024, 51(6): 118-127. |
[2] | CHEN Haoyang, ZHANG Lei. Very Short Texts Hierarchical Classification Combining Semantic Interpretation and DeBERTa [J]. Computer Science, 2024, 51(5): 250-257. |
[3] | XIE Fei, GAO Shuhui. Deepfake Images Detection Based on Quantitative Data Features Statistics [J]. Computer Science, 2023, 50(11A): 230300013-9. |
[4] | LIU Bao-bao, YANG Jing-jing, TAO Lu, WANG He-ying. Study on Prediction of Educational Statistical Data Based on DE-LSTM Model [J]. Computer Science, 2022, 49(6A): 261-266. |
[5] | CHEN Hui-pin, WANG Kun, YANG Heng, ZHENG Zhi-jie. Visual Analysis of Multiple Probability Features of Bluetongue Virus Genome Sequence [J]. Computer Science, 2022, 49(6A): 27-31. |
[6] | HAN Li-feng, CHEN Li. User Cold Start Recommendation Model Integrating User Attributes and Item Popularity [J]. Computer Science, 2021, 48(2): 114-120. |
[7] | ZHU Ying,XIA Yi-li,PEI Wen-jiang. Fusion of Infrared and Color Visible Images Based on Improved BEMD [J]. Computer Science, 2020, 47(3): 124-129. |
[8] | CHEN Xi, LI Lei-da, LI Qiao-yue, HAN Xi-xi, ZHU Han-cheng. No-reference Quality Assessment of Depth Images Based on Natural Scenes Statistics [J]. Computer Science, 2019, 46(6): 256-262. |
[9] | RU Feng, XU Jin, CHANG Qi, KAN Dan-hui. High Order Statistics Structured Sparse Algorithm for Image Genetic Association Analysis [J]. Computer Science, 2019, 46(4): 66-72. |
[10] | DONG Qing, LIN Yun. Kernel Fractional Lower Power Adaptive Filtering Algorithm Against Impulsive Noise [J]. Computer Science, 2019, 46(11A): 80-82. |
[11] | JU An-kang, GUO Yuan-bo, ZHU Tai-ming and WANG Tong. Survey on Network Security Event Correlation Analysis Methods and Tools [J]. Computer Science, 2017, 44(2): 38-45. |
[12] | CHI Yun-xian, ZHAO Shu-liang, LUO Yan, GAO Lin, ZHAO Jun-peng and LI Chao. Text Data Preprocessing Based on Term Frequency Statistics Rules [J]. Computer Science, 2017, 44(10): 276-282. |
[13] | MAO Xiang-di and SHI Zheng. Method about Reconstruction of SEM Image Based on Gradient [J]. Computer Science, 2016, 43(2): 297-301. |
[14] | CUI Min-jun, DUAN Li-guo and LI Ai-ping. Research on Multi-features Hierarchical Answer Quality Evaluation Method [J]. Computer Science, 2016, 43(1): 94-97. |
[15] | WANG Xin, YANG Yan-hong and CHEN Sheng-yong. Survey of Human Body Geometry Modeling Methods [J]. Computer Science, 2015, 42(Z11): 104-108. |
|