计算机科学 ›› 2025, Vol. 52 ›› Issue (7): 233-240.doi: 10.11896/jsjkx.240600144
孔银玲, 王中卿, 王红玲
KONG Yinling, WANG Zhongqing, WANG Hongling
摘要: 评论是消费者对商品评价和反馈的一种文本形式。评论摘要是指对评论进行提取和压缩,形成能够概括评论信息的短文本。目前,评论摘要任务大多只关注评论的文本序列,忽略了评论中的方面、意见短语和情感极性等相关评价对象信息。因此,提出了一种基于T5模型(Text-to-Text Transfer Transformer),结合评价对象信息的评论摘要方法。该方法首先利用T5模型对评论摘要任务进行建模,通过注意力机制学习评论文本中的上下文信息,生成包含核心语义的摘要文本;然后提取摘要文本中的评价对象信息,并将其作为评论摘要任务的辅助信息;最后利用少样本数据对模型参数进行特异性调整,进一步改善摘要的效果,从而生成高质量的评论摘要。实验结果表明,在酒店评论数据集SPACE和产品评论数据集OPOSUM+上,该方法相较于基准模型在ROUGE评价指标上均有显著提升。
中图分类号:
[1]RAFFEL C,SHAZEER N,ROBERTS A,et al.Exploring the limits of transfer learning with a unified text-to-text transformer[J].Journal of Machine Learning Research,2020,21:5485-5551. [2]CHU E,LIU P J.Meansum:A neural model for unsupervisedmulti-document abstractive summarization[C]//Proceedings of the 36th International Conference on Machine Learning.2019:1223-1232. [3]BRAZINSKAS A,LAPATA M,TITOV I.Unsupervised opinion summarization as copycat-review generation[C]//Procee-dings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:5151-5169. [4]ISO H,WANG X,SUHARA Y,et al.Convex aggregation foropinion summarization[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.2021:3885-3903. [5]ISONUMA M,MORI J,BOLLEGALA D,et al.Unsupervised abstractive opinion summarization by generating sentences with tree-structured topic guidance[J].Transactions of the Association for Computational Linguistics,2021,9:945-961. [6]AMPLAYO R K,LAPATA M.Unsupervised opinion summarization with noising and denoising[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:1934-1945. [7]MENG X,WEI F,LIU X,et al.Entity-centric topic-oriented opinion summarization in twitter[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2012:379-387. [8]SHEN M,MA J,WANG S,et al.Simple yet effective synthetic dataset construction for unsupervised opinion summarization[C]//Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics.2023:1853-1866. [9]SUHARA Y,WANG X,ANGELIDIS S,et al.Opiniondigest:A simple framework for opinion summarization[C]//Proceedings of the 58th Annual Meeting of the Association for Computa-tional Linguistics.2020: 5789-5798. [10]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [11]ZHANG M,ZHOU G,HUANG N,et al.Asu-osum:Aspect-augmented unsupervised opinion summarization[J].Information Processing and Management,2023,60(1):103138. [12]SILEDAR T,MAKWANA J,BHATTACHARYYA P.Aspect-sentiment-based opinion summarization using multiple information sources[C]//Proceedings of the 6th Joint International Conference on Data Science & Management of Data(10th ACM IKDD CODS and 28th COMAD).2023:55-61. [13]LERMAN K,BLAIR-GOLDENSOHN S,MCDONALD R T.Sentiment summarization:Evaluating and learning user preferences[C]//Proceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics.2009:514-522. [14]WANG K,WAN X.Transsum:Translating aspect and senti-ment embeddings for self-supervised opinion summarization[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2021:729-742. [15]BHASKAR A,FABBRI A R,DURRETT G.Prompted opinion summarization with GPT-3.5[C]//Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics.2023:9282-9300. [16]BROWN T B,MANN B,RYDER N,et al.Language Models are Few-Shot Learners[J].arXiv:2005.14165,2020. [17]AMPLAYO R K,ANGELIDIS S,LAPATA M.Aspect-controllable opinion summarization[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.2021:6578-6593. [18]GLIWA B,MOCHOL I,BIESEK M,et al.SAMSum Corpus:A Human-annotated Dialogue Dataset for Abstractive Summarization[J].arXiv:1911.12237,2019. [19]LEWIS M,LIU Y,GOYAL N,et al.BART:denoising sequence-to-sequence pre-training for natural language generation,translation,and comprehension[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:7871-7880. [20]LIN C Y.Rouge:A package for automatic evaluation of summaries[C]//Text Summarization Branches Out.2004:74-81. [21]ERKAN G,RADEVD R.Lexrank:Graph-based lexical centrality as salience in text summarization[J].Journal of Artificial Intelligence Research,2004,22:457-479. [22]ANGELIDIS S,AMPLAYO R K,SUHARA Y,et al.Extractive opinion summarization in quantized transformer spaces[J].Transactions of the Association for Computational Linguistics,2021,9:277-293. |
|