计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240700035-10.doi: 10.11896/jsjkx.240700035
武星明1, 党旗1, 江波2, 张悦超1, 周继威1, 王晓龙3
WU Xingming1, DANG Qi1, JIANG Bo2, ZHANG Yuechao1, ZHOU Jiwei1, WANG Xiaolong3
摘要: 在新能源光伏电站选址过程中,利用无人机采集图像进行水域分布的分析是一个不可或缺的步骤。通常采用水体分割算法对水域图像中的水体进行分割。然而,基于模型结构的改进或单个场景训练数据集的增加,对于语义分割神经网络来说只适用于对应数据集场景的性能提升,难以保证开放场景下水体边界分割的准确度。为了解决这个问题,提出两种用于水体分割神经网络的轮廓后处理算法。与最先进的技术相比,连续轮廓后处理算法可以根据轮廓特征有效去除水体分割算法产生的异常小轮廓,同时针对复杂图像产生断续水体边界线的情况,断续轮廓处理算法通过点集重排实现水体边界线补全,两种后处理算法均能提升分割精度。以PIDNet,EGE-UNet,BiSeNetv2和Fast-SCNN为实验模型,结果表明,在水体边界线检测任务中,实验模型经连续轮廓处理后的像素准确率(PA)和平均交并比(mIoU)都有所提高,平均增量分别为2.88%和2.71%;经断续轮廓处理后,平均F1指标提高2.62%。
中图分类号:
[1]LI D,WU B S,CHEN B W,et al.Review of water body inforamationextraction hasedl on satellite remoke sensing[J].Jourmal of Tsinghua University(Scicnce and Technology),2020,60(2):147-161. [2]SU L F,LI Z X,GAO F,et al.A review of remoe scnsing image water extraction[J].Remote Sensing for Land and Resources,2021,33(1):9-19. [3]WANG H,QIN F.Summary of the research on water body extractiomnand application from remotc sensing image[J].Science of Surveying and Mapping,2018,43(5):23-32. [4]HUANG W K,TENG F,WANG Z D,et al.Image Segmentation Based on Deep Learning:A Survey[J].Computer Science,2023,49(4):233-239. [5]LO S W,WU J H,LIN F P,et al.Visual Sensing for Urban Flood Monitoring[J].Sensors,2015,15:20006-20029. [6]CHEN G,BAI K,LIN Z,et al Method on water level ruler rea-ding recognition based on image processing [J].Signal lmage and Video Processing,2021,15:33-41. [7]WILSON T,WILLIAMS S B.Adaptive Path Planning forDepth-constrained Bathymetric Mapping with an Autonomous Surface Vessel[J].Field Robot,2018,35:345-358. [8]HUANG Y S,XU Z P,CHEN Y M,et al.Design of automatic berthing control system of USV[J].China Meas Test,2020,46(10):111-117. [9]WANG L,WU Q,LIU J L,et al.State-of-the-art research on motion control of maritime autonomous surface ships[J].Mar Sci Eng,2019,7(12):438. [10]BOUKOBERINE M N,ZHOU Z,BENBOUZID M.Power Supply Architectures for Drones-A Review[C]//Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society.2019:5826-5831. [11]FENG Q L,NIU B,REN Y,et al.A10-m national scale map of ground mounted photovoltaic power stations in China of 2020[J].Scientific Data,2024,11:198. [12]CHEN Y,ZHOU J,GE Y,et al.Uncovering the rapid expansion of photovoltaic power plants in China from 2010 to 2022 using satellite data and deep learning[J].Remote Sensing Environment,2024,305:114100. [13]XIA Z,LI Y,GUO S,et al.Satellites reveal spatial heterogeneity in dryland photovoltaic plants’ effects on vegetation dynamics[J].Earth’s Future,2024,12:e2024EF004427. [14]MURPHY R R,STEIMLE E,GRIFFIN C,et al.Cooperative use of unmanned sea surface and micro aerial vehicles at hurricane Wilma[J].Field Robot.,2008,25(3):164-780. [15]PEREZ-GONZALEZ P,JARAMILLO-DUQUE L,CANO-QUINTERO J B.Automatic Boundary Extraction for Photovoltaic Plants Using the Deep Learning U-Net Model[J]. Applied Sciences,2021,11(14):6524. [16]MA C,LIU Z.Water-surface photovoltaics:Performance,utilization,and interactions with water eco-environment[J].Renewable and Sustainable Energy Reviews,2022,167. [17]TERCAN E,DERELI M A,SARACOGLU B O.Location alternatives generation and elimination of floatovoltaics with virtual power plant designs[J].Renewable Energy,2022,193(C):1150-1163. [18]VASILOPOULOS E,VOSINAKIS G,KROMMYDA M,et al.A comparative study of autonomous object detection algorithms in the maritime environment using a UAV platform[J].Computation,2022,10(3):42. [19]WANG S R,SHEN F,LI R H,et al.Research on water surface flare removal and information reconstruction method of UAV hyperspectral image[J].Journal of East China Normal University(Natural Science Edition),2024(1):36-49. [20]FU Q F,LU M,ZHANG Z Y,et al.Research on water level monitoring method based on semantic segmentation[J].Advances in Laser and Optoelectronics,2022,59(4):12. [21]XU J C,BHATTACHARYYA S P.A pid controller architecture inspired enhancement to the pso algorithm[C]//Future of Information and Communication Conference.2022:587-603. [22]CHENG S H,ZHAO K P,ZHANG S J,et al.Water level detection based on U-net[J].Acta Metrologica Sinica,2019,40(3):361- 366. [23]MAGGIOR E,TARABALKA Y,CHAROIAT G,et al.can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C]//IEEEInternational Geoscience and Remote Sensing Symposium.2017:3226-3229. [24]WU T,VALLET B,PIERROT-DESEILLIGNY M,et al.A new stereo dense matching benchmark dataset for deep learning[J].Copernicus GmbH,2021(B2):405-412. [25]SHI T T,GUO Z,LI X Y X.Improvement of deep learningMethod for water body segmentation of remote sensing images based on attention modules[J].Earth Science Informatics,2023,16(3):2865-2876. [26]YAO L H,KANOULAS D,JI Z,et al.ShorelineNet:An Efficient Deep Learning Approach for Shoreline Semantic Segmentation for Unmanned Surface Vehicles[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.2021:5403-5409. [27]YANG Z,LI Y,WANG B,et al.A Lightweight Sea Surface Object Detection Network for Unmanned Surface Vehicles[J].Journal of Marine Science and Engineering,2022,10(7):965. [28]BOVCON B,KRISTAN M.A water-obstacle separation and re-finement network for unmanned surface vehicles[C]//IEEE International Conference on Robotics and Automation(ICRA).2020:9470-9476. [29]WEN Q,LI L,XIONG L,et al.A review of water body extraction research based on deep learning in remote sensing images[J].Remote Sensing for Natural Resources,2024(3). [30]ZHAO H S,SHI J P,QI X J,et al.Pyramid Scene Parsing Network[J].arXiv:1612.01105,2016. [31]LONG J,SHELHARMER E,DARRELL T.Fully ConvolutionalNetworks for Semantic Segmentation[J].arXiv:1411.4038,2014. [32]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818. [33]XU J C,XIONG Z X,BHATTACHARYYA S P.PIDNet:A Real-time Semantic Segmentation Network Inspired by PID Controllers[J].arXiv:2206.02066,2023. [34]PENG J C,LIU Y,TANG S Y,et al.Pp-liteseg:A superior real-time semantic segmentation model[J].arXiv:2204.02681,2022. [35]RONNCBCRGER O,FISCHER P,BROX T.U-Net:Convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention So-ciety.2015:234-241. [36]ZHOU Z,RAHMAN SIDDIQUEE M M,TAJBAKHSH N,et al.Unet++:A nested u-net architecture for medical image segmentation[C]//Medical Image Computing and Computer Assisted Intervention Society.2018:3-11. [37]SHI T T,GUO Z H,YAN X.Water body segmentation in remote sensing images based on multi-scale fusion attention mo-dule improved UNet[J].Chinese Journal of Liquid Crystals and Displays,2023,38(8):397-408. [38]CHAI Z H,LUO J F,WEI X L.Rethinking bisenet for real-time semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:9716-9725. [39]IOFFE S,SZEGEDY C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning.2015:448-456. [40]GLORITl X,BORDES A,BENGIO Y.Deep sparse rectifier neural networks[C]//International Conference on Artificial Intelligence and Statistics.2011:315-323. [41]POUDEL R P K,LIWICKI S,CIPOLLA R.Fast-SCNN:Fast Semantic Segmentation Network[J].arXiv:1902.04502,2019. [42]ZEILER M D,FERGUS R.Visualizing and understanding con-volutional networks[C]//European Conference on Computer Vision.2014:818-833. [43]CANNY J.A Computational approach to edge detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1986,8(6):679-698. [44]WU X Y,CHEN Z M,LI J J.Semi-supervised Deep Learning Network Based Water Body Segmentation Method[J].Journal of Zhengzhou University(Natural Science Edition),2023,55(6):29-34. [45]CAO W Z,WANG T G,XU B,et al.Research on water level detection of ship lock based on semantic segmentation[J].Chinese Journal of Scientific Instrument,2023,44(2):238-247. [46]朱战霞,李倩龙,张志昊,等.一种面向空间轻量化平台的卫星组件轮廓提取方法及系统:CN 202310251728.0[P].2023-07-14. [47]CARBONNEAU P E,DUGDALE S J,BRECKON T P,et al.Adopting deep learning methods for airborne RGB fluvial scene classification[J].Remote Sensing of Environment,2022,251. [48]XIA M,QIAN J,ZHANG X,J.et al.River segmentation based on separable attention residual network[J].Journal of Applied Remote Sensing,2019,14(3):1. [49]SARP S,KUZLU M,CETIN M,et al.Detecting floodwater on roadways from image data using Mask-R-CNN[C]//Procee-dings Int.Conf.Innovations Intell.Syst.Appl..2020:1-6. [50]RUAN J C,XIE M Y,GAO J S,et al.EGE-UNet:an Efficient Group Enhanced UNet for skin lesion segmentation[J].arXiv:2307.08473,2023. [51]ZHANG H,CISSE M,DAUPHIN Y N,et al.mixup:BeyondEmpirical Risk Minimization[J].arXiv:1710.09412,2017. [52]CORDTS M,OMRAN M,RAMOS S.The cityscapes dataset for semantic urban scene understanding[C]//2016 IEEE Confe-rence on Computer Vision and Pattern Recognition.2016:3213-3223. [53]LIU Y X,ZHANG B,WANG B.Semi-supervised semantic segmentation based on Generative Adversarial Networks for remote sensing images[J].Journal of Infrared and Millimeter Waves,2020,39(4):473-482. |
|