计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240200107-6.doi: 10.11896/jsjkx.240200107

• 图像处理&多媒体技术 • 上一篇    下一篇

一种EO-YOLOX输电线绝缘子检测方法

胡益民1,2, 曲光3, 王夏兵4, 张杰4, 李加东1,2   

  1. 1 中国科学院苏州纳米技术与纳米仿生研究所 江苏 苏州 215123
    2 中国科学院多功能材料与轻巧系统重点实验室 江苏 苏州 215123
    3 空军通信士官学校地空导航系 辽宁 大连 116600
    4 郑州轻工业大学电气信息工程学院 郑州 450002
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 曲光(quhn1234@163.com)
  • 作者简介:(ymhu2015@sinano.ac.cn)
  • 基金资助:
    国家自然科学基金(62102373)

EO-YOLOX Model for Insulators Detection in Transmission Lines

HU Yimin1,2, Qu Guang 3, WANG Xiabing4, ZHANG Jie 4, LI Jiadong 1,2   

  1. 1 Suzhou Institute of Nano-tech and Nano-bionic,Chinese Academy of Sciences,Suzhou,Jiangsu 215123,China
    2 Key Laboratory of Multifunctional Nanomaterials and Smart Systems,Chinese Academy of Sciences,Suzhou,Jiangsu 215123,China
    3 Department of Ground-to-Air Navigation,Air Force Communication NCO Academy,Dalian,Liaoning 116600,China
    4 College of Electric and Information Engineering,Zhengzhou University of Light Industry,Zhengzhou 450002,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:HU Yimin,born in 1987,master,engineer,is a member of CCF(No.T4466M).His main research interests include machine vision,bionic robots,and multi-sensor data fusion.
    QU Guang,born in 1984,master,lectu-rer.His main research interests include image processing and object detection.
  • Supported by:
    National Natural Science Foundation of China(62102373).

摘要: 为了保证电力系统的安全运行,使用无人机巡检技术对高压绝缘子进行日常检查是必要的。然而,受到电力线磁场和飞行安全的影响,图像数据中绝缘子像素表征减少,进而导致绝缘子检测的准确性降低。针对上述问题,提出了一种有效优化YOLOX(Efficient Optimization YOLOX,EO-YOLOX)检测模型。该模型首先利用空洞卷积(Atrous Convolution)的思想,提出了空洞空间金字塔池化(Atrous Spatial Pyramid Pooling,ASPP)模块,消除图像中的无关信息,提高了网络识别感兴趣区域的能力。其次,在特征融合阶段加入了注意特征融合(Attentione Feature Fusion,AFF)模块,通过向融合特征图中补充深层语义和浅层细节信息,提高了检测绝缘子的准确性。最后,针对传统损失函数不能准确反映两个边界框之间距离的问题,提出了一种优化损失函数,以更准确地评估边界框的质量。将该算法在绝缘子数据集上进行了实验和测试,结果表明,与传统的 YOLOX 方法相比,该算法在识别绝缘子方面表现优异,mAP 值提高了约 2.59%。该模型的实时处理效率高达41.21帧每秒,有效解决了绝缘子检测难题。

关键词: 绝缘子检测, 空洞卷积, EO-YOLOX, 绝缘子数据集

Abstract: To ensure the safe operation of the power system,daily inspection of high voltage insulators using UAV inspection techniques is necessary.However,the influence of power line magnetic field and flight safety leads to a reduction of insulator pixel representation in the image data,which in turn reduces the accuracy of insulator detection.To address these issues,this paper proposes an efficient optimization YOLOX(EO-YOLOX) detection model.Firstly,the model makes use of the idea of atrous convolution and proposes the atrous spatial pyramid pooling(ASPP) module,which eliminates the irrelevant information in the image and improves the ability of the network to identify the region of interest.Secondly,the attentione feature fusion(AFF) module is ad-ded to the feature fusion stage,which improves the accuracy of detecting insulators by supplementing deep semantic and shallow detail information into the fused feature map.Finally,for the problem that the traditional loss function cannot accurately reflect the distance between two bounding boxes,this paper proposes an optimised loss function to more accurately assess the quality of the bounding boxes.Experiments and tests are carried out on the insulator dataset,and the experiment results show that the proposed algorithm performs excellently in identifying insulators,with an improvement of about 2.59% in mAP value,compared with the traditional YOLOX method.The real-time processing efficiency of the model is as high as 41.21 frames per second,which effectively solves the insulator detection problem.

Key words: Insulator detection, Atrous convolution, EO-YOLOX, Insulator dataset

中图分类号: 

  • TP391.41
[1]SHAO G W,LIU Z,FU J,et al.Research progress in unmanned aerial vehicle inspection technology on overhead transmission lines[J].High Voltage Engineering,2020,46(1):14-22.
[2]WANG Y Q,YUAN T,NIE L,et al.Machine vision inspectionmethod for defects of glass insulator[J].High Voltage Engineering,2022,48(12):4933-4940.
[3]JIA X F,YU Y Q,GUO Y C,et al.Lightweight detection me-thod of self-explosion defect of aerial photo insulator[J].High Voltage Engineering,2023,49(1):294-300.
[4]WU K J,DING Y.Wide Self-Attention mechanism fusion dense residual network image dehazing[J].Journal of Hunan University(Natural Sciences),2023,50(8):13-22.
[5]GOU J N,DU S S,LIU L.Transmission line insulator self-explosion detection based on improved mask region-convolutional neural network[J].Transactions of CHINA Electrotechnical Society,2023,38(1):47-59.
[6]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587.
[7]GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448.
[8]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(6):1137-1149.
[9]CAI Z,VASCONCELOS N.Cascade r-cnn:Delving into highquality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6154-6162.
[10]HE K,GKIOXARI G,DOLLÁR P,et al.Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2961-2969.
[11]MA Y,SIN Y G,YUAN J.Remote sensing target detection algorithm based on improved Faster R-CNN[J].Modern Electronic Technology,2022,45(3):58-63.
[12]SHA M M,LI Y,LI A.Improved Faster R-CNN for multi-scale aircraft target detection in remote sensing images[J].Journal of Remote Sensing,2022,26(8):1624-1635.
[13]YANG X,WANG Q,YAO A,et al.Improved aircraft detection for optical remote sensing images based on Faster R-CNN[J].Advances in Lasers and Optoelectronics,2023,60(12):427-437.
[14]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19.
[15]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,Part I 14.Springer International Publishing,2016:21-37.
[16]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988.
[17]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788.
[18]TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10781-10790.
[19]LAW H,DENG J.Cornernet:Detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:734-750.
[20]YIN F L,WANG T Y.Attention feature fusion SSD algorithm for target detection in remote sensing images[J].Network Security and Data Governance,2022,41(9):67-73.
[21]LIN W L,ALIFKURBAN,CHEN Y X,et al.ACFEM-Reti-naNet algorithm for remote sensing image target detection[J/OL].http://kns.cnki.net/kcms/detail/11.2127.TP.20221125.1132.018.html.
[22]LIU Z,LIN Y,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022.
[23]WANG F,HU H,ZHOU Q.DACFA-Det:a domain adaptivecalibrated free anchor detection network for agricultural similar pests[C]//International Conference on Computer Graphics,Artificial Intelligence,and Data Processing(ICCAID 2021).SPIE,2022,12168:423-427.
[24]LI X P,ZHANG Y B,LI Y P,et al.An improved algorithm for infrared image target detection based on YOLOv5s[J].Laser and Infrared,2023,53(7):1043-1051.
[25]LIU Y,SHAO Z,HOFFMANN N.Global attention mecha-nism:Retain information to enhance channel-spatial interactions[J].arXiv:2112.05561,2021.
[26]WANG D L,ZHANG S H,YUAN B X,et al.Research on Self-Explosion defect detection of lightweight glass insulators based on improved YOLOv5[J].High Voltage Engineering,2023,49(10):4382-4390.
[27]GOU J N,DU S S,WANG S D,et al.Lightweight feature fusion CenterNet transmission line insulator self-explosion detection [J].Journal of Beijing University of Aeronautics and Astronautics,2024,50(7);2161-2171.
[28]LI B,QU L Y,ZHU X S,et al.Insulator defect detection basedon multi-scale feature fusion[J].Transactions of CHINA Electrotechnical Society,2023,38(1):60-70.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!