计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240700131-5.doi: 10.11896/jsjkx.240700131
何静1, 陈逸然2
HE Jing1, CHEN Yiran2
摘要: 针对网络谣言识别面临的新挑战,探索大模型在识别谣言不同来源中的效能。研究构建国内外人为谣言与AI谣言数据集,据此在零样本设置情况下,对4种大模型的谣言来源辨识能力进行测试。研究发现,单一大模型识别谣言的精确度较低,存在明显错误倾向。为提高识别性能,采用预训练、微调和集成学习等方法,使得大模型性能得到显著提升。进一步,提出基于模型碰撞的集成学习方法,利用多模型反馈改善谣言来源识别效能。实验结果显示,集成学习框架能够整合各模型优势,显著提高识别准确性。通过实证研究验证了大型语言模型在谣言识别中的潜力和改进方向,有助于应对当前复杂的网络谣言环境,维护网络空间的清朗。
中图分类号:
[1]YAN Y X,LI B,FENG J Y,et al.Research on the impact of trends related to ChatGPT[J].Procedia Computer Science,2023,221:1281-1294. [2]HUTSON M.Robo-writers:the rise and risks of language-ge-nerating AI[J].Nature,2021,591(7848):22-25. [3]LI H,MOON J,PURKAYASTHA S,et al.Ethics of large language models in medicine and medical research[J].The Lancet Digital Health,2023,5(6):333-335. [4]LIU Y,SHEN H,SHI L.A review of rumor detection tech-niques in social networks[J].Journal of Intelligent & Fuzzy Systems,2023,44(3):3561-3578. [5]KWON S,CHA M,JUNG K,et al.Prominent Features of Rumor Propagation in Online Social Media[C]//Proceedings of the 13th International Conference on Data Mining.New York:IEEE Press,2013:1103-1108. [6]YANG C,ZHANG P,QIAO W,et al.Rumor Detection on So-cial Media with Crowd Intelligence and ChatGPT-Assisted Networks[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.2023:570-5717. [7]VARLAMIS I,MICHAIL D,GLYKOU F,et al.A survey onthe use of graph convolutional networks for combating fake news[J].Future Interne,2022,14:70. [8]SHAHID W,LI Y R,STAPLES D,et al.Are You a Cyborg,Bot or Human?-A Survey on Detecting Fake News Spreaders[J].IEEE Access,2022,10:27069-27083. [9]D’ULIZIA A,CASCHERA C M,FERRI F,et al.Fake newsdetection:a survey of evaluation datasets[J].PeerJ Computer Science,2021,7:518. [10]ALSAIF H F,ALDOSSARI H D.Review of stance detection for rumor verification in social media[J].Engineering Applications of Artificial Intelligence,2023,119:105801. [11]HAMDA S,IBRAHIM B,YAHYA S.Adapting Pre-trainedLanguage Models to Rumor Detection on Twitter[J].Journal of Universal Computer Science,2021,27(10):1128-1148. [12]CHEN C Y,SHU K.2023.Combating misinformation in the age of LLMs:Opportunities and challenges[J].AI Magazine,2024,45(3):1-15. [13]LIU Q,TAO X,WU J F,et al.Can Large Language Models Detect Rumors on Social Media?[J].arXiv:2402.03916,2024. [14]YAN Y Q,ZHENG P,WANG Y J.Enhancing large language model capabilities for rumor detection with Knowledge-Powered Prompting[J].Engineering Applications of Artificial Intelligence,2024,133(C):108259. [15]BANG Y J,CAHYAWIJAYA S,LEE N,et al.A Multitask,Multilingual,Multimodal Evaluation of ChatGPT on Reasoning,Hallucination,and Interactivity[J].arXiv:2302.04023,2023. [16]ALI H,QADIR J,SHAH Z,et al.ChatGPT and large language models(LLMs) in healthcare:Opportunities and risks[C]//Proceedings of the 2023 IEEE International Conference on Artificial Intelligence,Blockchain,and Internet of Things.New York:IEEE Press,2023:1-4. [17]ZHANG Y Y,YUAN J J.A review of rumor detection research based on social media[J].Data Communication,2024(1):28-33. [18]ZAEEM R N,LI C J,BARBER K S,et al.On sentiment of online fake news[C]//Proceedings of 2020 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.New York:IEEE Press,2020:760-767. [19]ZHANG N,SONG J H,CHEN K,et al.Emotional contagion in the propagation of online rumors[J].Issues in Information Systems,2022,23(2):1-19. |
|