计算机科学 ›› 2025, Vol. 52 ›› Issue (1): 65-71.doi: 10.11896/jsjkx.240800022

• 大语言模型技术研究及应用 • 上一篇    下一篇

大模型驱动多智能体的军事需求生成框架

李嘉晖, 张萌萌, 陈洪辉   

  1. 国防科技大学信息系统工程全国重点实验室 长沙 410000
  • 收稿日期:2024-08-05 修回日期:2024-10-08 出版日期:2025-01-15 发布日期:2025-01-09
  • 通讯作者: 张萌萌(18670381635@163.com)
  • 作者简介:(l15612938@qq.com)

Large Language Models Driven Framework for Multi-agent Military Requirement Generation

LI Jiahui, ZHANG Mengmeng, CHEN Honghui   

  1. National Key Laboratory of Information Systems Engineering,National University of Defense Technology,Changsha 410000,China
  • Received:2024-08-05 Revised:2024-10-08 Online:2025-01-15 Published:2025-01-09
  • About author:LI Jiahui,born in 2000,postgraduate.His main research interests include requirement analysis and LLMs.
    ZHANG Mengmeng,born in 1990,Ph.D,associate professor.His main research interests include requirement analysis and system design and evaluation.

摘要: 联合作战军事需求生成涉及的参与人员多、工作量庞大,生成过程大多依赖个体经验与多来源文档,存在需求生成效率较低等问题,难以有效支撑联合作战体系设计。随着大模型技术的发展,大模型驱动的智能体在诸多领域展现出卓越的性能,多智能体系统通过分布式决策实现群体智能,能够高效处理复杂任务。针对军事需求生成过程中存在的效率低下的问题,提出大模型驱动多智能体的军事需求生成框架。该框架整合了多模态信息获取智能体、军事专家智能体、会议主持人等要素。多模态信息获取智能体集成多模态信息处理工具,能够快速获取军事需求,并与用户进行问答交互;军事专家智能体以自然语言对话的形式模拟人类专家讨论生成需求的场景,大模型驱动军事专家智能体理解环境,并能自主调用开源论文库、搜索引擎等工具以支持对话;会议主持人接收人类用户的指令,利用大模型细化指令内容,生成对话提示词和问题背景描述。以俄乌冲突为实验背景,对相关多模态信息进行军事需求生成。实验结果表明,当多模态信息量在大模型最大处理容量以内时,该框架显著降低了军事需求生成的时间消耗,视频资源节省时间占比达到80%~85%,音频资源节省时间占比为90%~95%。

关键词: 需求生成, 多智能体, 生成式人工智能, 大模型, 多模态

Abstract: Military requirement generation in joint operation involves many participants and a heavy workload.The process relies on individual experience and multiple sources of documents,which leads to problems such as low efficiency in requirement generation and difficulty supporting the design of joint operation system.With the development of large language models (LLMs),LLMs-driven agents have shown excellent performance in various fields,and multi-agent system can efficiently handle complex tasks by leveraging group intelligence through distributed decision-making.To address the low efficiency in military requirement generation,a framework for military requirement generation with LLMs-driven multi-agent system is proposed.The framework includes a multi-modal information acquisition agent,military expert agents,a moderator and other components.The multi-modal information acquisition agent can rapidly process multi-modal information,extract military requirements and provide the user with a question-and-answer function.Military expert agents simulate human experts discussing the generation of requirements through natural language dialogues.Driven by LLMs,these agents can perceive the environment and autonomously use tools such as Ar-xiv,search engines and other resources to support the dialogues.The moderator receives instructions from the human user,refines the content of the instructions using LLMs and generates dialogue prompts and problem background descriptions.Using the Russia-Ukraine conflict as an experimental case,military requirements are generated from relevant multi-modal information.The experimental results show that when the multi-modal information capacity is within the maximum processing capacity of LLMs,the framework significantly reduces the time consumption for military requirement generation,with time savings of 80% to 85% for video resources and 90% to 95% for audio resources.

Key words: Requirement generation, Multi-agent, Generative AI, LLMs, Multi-modal

中图分类号: 

  • TP181
[1]YU B,DUAN C Y.Military requirements and military requirements engineering[J].Requirement Engineering,2006(2):37-42.
[2]ZHANG Y,GUO Q S.Operational concept design method basedon DoDAF for ground unmanned combat system[J].Fire Control & Command Control,2021,46(5):52-57.
[3]CHEN Y X,HE L,WU J C,et al.Military requirement analysis methods and applications of new concept equipment[J].Fire Control & Command Control,2023,48(11):87-94,101.
[4]CHEN H H,CHEN T,ZHANG W M.Requirements engineering for networking information centric system of systems[J].Journal of Command and Control,2016,2(4):277-281.
[5]JIAO A L,XU J F.Approach for Combat CapabilityRequire-ment Satisfactory Degree Evaluation of Weapon System[J].Command Control & Simulation,2019,41(1):68-72.
[6]CHEN Y W,DOU Y J,CHENG B,et al.Research on Capability Requirement Generation of Weapon System-of-systems based on operational activity decomposition [J].Systems Engineering-Theory & Practice,2011,31(S1):154-163.
[7]REED S,ZOLNA K,PARISOTTO E,et al.A generalist agent[J].arXiv:2205.06175,2022.
[8]WENG L.LLM Powered Autonomous Agents[EB/OL].(2023-06-23)[2024-04-15].https://lilianweng.github.io/posts/2023-06-23-agent/.
[9]LÁLA J,O’DONOGHUE O,SHTEDRITSKI A,et al.Paperqa:Retrieval-augmented generative agent for scientific research[J].arXiv:2312.07559,2023.
[10]THAKUR C,GUPTA S.Multi-Agent system applications inhealth care:A survey[M]//Multi Agent Systems:Technologies and Applications towards Human-Centered.Singapore:Springer Nature Singapore,2022:139-171.
[11]HE Z,ZHANG C.AFSPP:Agent Framework for Shaping Pre-ference and Personality with Large Language Models[J].arXiv:2401.02870,2024.
[12]HONG S,ZHENG X,CHEN J,et al.Metagpt:Meta programming for multi-agent collaborative framework[J].arXiv:2308.00352,2023.
[13]CHASE H.Applications that can reason,Powered by LangChain[R/OL].(2023-07-10)[2024-04-15].https://www.langchain.com.
[14]PARK J S,POPOWSKI L,CAI C,et al.Social simulacra:Creating populated prototypes for social computing systems[C]//Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology.2022:1-18.
[15]CALLISON-BURCH C,TOMAR G S,MARTIN L J,et al.Dungeons and dragons as a dialog challenge for artificial intelligence[J].arXiv:2210.07109,2022.
[16]PARK J S,O’BRIEN J,CAI C J,et al.Generative agents:Interactive simulacra of human behavior[C]//Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology.2023:1-22.
[17]WU Q,BANSAL G,ZHANG J,et al.Autogen:Enabling next-gen llm applications via multi-agent conversation framework[J].arXiv:2308.08155,2023.
[18]LI G,HAMMOUD H,ITANI H,et al.Camel:Communicativeagents for“ mind” exploration of large language model society[J].Advances in Neural Information Processing Systems,2023,36:51991-52008.
[19]QIAN C,CONG X,YANG C,et al.Communicative Agents for Software Development[J].arXiv:2307.07924,2023.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!