计算机科学 ›› 2025, Vol. 52 ›› Issue (1): 65-71.doi: 10.11896/jsjkx.240800022
李嘉晖, 张萌萌, 陈洪辉
LI Jiahui, ZHANG Mengmeng, CHEN Honghui
摘要: 联合作战军事需求生成涉及的参与人员多、工作量庞大,生成过程大多依赖个体经验与多来源文档,存在需求生成效率较低等问题,难以有效支撑联合作战体系设计。随着大模型技术的发展,大模型驱动的智能体在诸多领域展现出卓越的性能,多智能体系统通过分布式决策实现群体智能,能够高效处理复杂任务。针对军事需求生成过程中存在的效率低下的问题,提出大模型驱动多智能体的军事需求生成框架。该框架整合了多模态信息获取智能体、军事专家智能体、会议主持人等要素。多模态信息获取智能体集成多模态信息处理工具,能够快速获取军事需求,并与用户进行问答交互;军事专家智能体以自然语言对话的形式模拟人类专家讨论生成需求的场景,大模型驱动军事专家智能体理解环境,并能自主调用开源论文库、搜索引擎等工具以支持对话;会议主持人接收人类用户的指令,利用大模型细化指令内容,生成对话提示词和问题背景描述。以俄乌冲突为实验背景,对相关多模态信息进行军事需求生成。实验结果表明,当多模态信息量在大模型最大处理容量以内时,该框架显著降低了军事需求生成的时间消耗,视频资源节省时间占比达到80%~85%,音频资源节省时间占比为90%~95%。
中图分类号:
[1]YU B,DUAN C Y.Military requirements and military requirements engineering[J].Requirement Engineering,2006(2):37-42. [2]ZHANG Y,GUO Q S.Operational concept design method basedon DoDAF for ground unmanned combat system[J].Fire Control & Command Control,2021,46(5):52-57. [3]CHEN Y X,HE L,WU J C,et al.Military requirement analysis methods and applications of new concept equipment[J].Fire Control & Command Control,2023,48(11):87-94,101. [4]CHEN H H,CHEN T,ZHANG W M.Requirements engineering for networking information centric system of systems[J].Journal of Command and Control,2016,2(4):277-281. [5]JIAO A L,XU J F.Approach for Combat CapabilityRequire-ment Satisfactory Degree Evaluation of Weapon System[J].Command Control & Simulation,2019,41(1):68-72. [6]CHEN Y W,DOU Y J,CHENG B,et al.Research on Capability Requirement Generation of Weapon System-of-systems based on operational activity decomposition [J].Systems Engineering-Theory & Practice,2011,31(S1):154-163. [7]REED S,ZOLNA K,PARISOTTO E,et al.A generalist agent[J].arXiv:2205.06175,2022. [8]WENG L.LLM Powered Autonomous Agents[EB/OL].(2023-06-23)[2024-04-15].https://lilianweng.github.io/posts/2023-06-23-agent/. [9]LÁLA J,O’DONOGHUE O,SHTEDRITSKI A,et al.Paperqa:Retrieval-augmented generative agent for scientific research[J].arXiv:2312.07559,2023. [10]THAKUR C,GUPTA S.Multi-Agent system applications inhealth care:A survey[M]//Multi Agent Systems:Technologies and Applications towards Human-Centered.Singapore:Springer Nature Singapore,2022:139-171. [11]HE Z,ZHANG C.AFSPP:Agent Framework for Shaping Pre-ference and Personality with Large Language Models[J].arXiv:2401.02870,2024. [12]HONG S,ZHENG X,CHEN J,et al.Metagpt:Meta programming for multi-agent collaborative framework[J].arXiv:2308.00352,2023. [13]CHASE H.Applications that can reason,Powered by LangChain[R/OL].(2023-07-10)[2024-04-15].https://www.langchain.com. [14]PARK J S,POPOWSKI L,CAI C,et al.Social simulacra:Creating populated prototypes for social computing systems[C]//Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology.2022:1-18. [15]CALLISON-BURCH C,TOMAR G S,MARTIN L J,et al.Dungeons and dragons as a dialog challenge for artificial intelligence[J].arXiv:2210.07109,2022. [16]PARK J S,O’BRIEN J,CAI C J,et al.Generative agents:Interactive simulacra of human behavior[C]//Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology.2023:1-22. [17]WU Q,BANSAL G,ZHANG J,et al.Autogen:Enabling next-gen llm applications via multi-agent conversation framework[J].arXiv:2308.08155,2023. [18]LI G,HAMMOUD H,ITANI H,et al.Camel:Communicativeagents for“ mind” exploration of large language model society[J].Advances in Neural Information Processing Systems,2023,36:51991-52008. [19]QIAN C,CONG X,YANG C,et al.Communicative Agents for Software Development[J].arXiv:2307.07924,2023. |
|