计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240800044-8.doi: 10.11896/jsjkx.240800044
黄柏澄1, 王晓龙2, 安国成2, 张涛1
HUANG Bocheng1, WANG Xiaolong2, AN Guocheng2, ZHANG Tao1
摘要: 目前,输电线路部分故障类别识别存在样本严重不足、无人机拍摄远距离小目标定位困难等问题,导致输电线路故障识别精度较低。为此,提出一种基于迁移学习与改进YOLOv8s的输电线路故障识别方法。首先,为改善小样本情况下的故障识别效果,该算法以YOLOv8s作为基线模型,使用迁移学习方法对模型进行预训练,并提出一种基于双向相关性的迁移学习样本选择模块,筛选出与目标域具有强相关性的样本类别,避免使用迁移学习时可能产生的负迁移问题,更好地辅助故障识别任务。其次,针对小目标定位困难问题,通过设计小目标注意检测层,将80*80输出特征图与浅层特征图进行特征融合后,引入EMA多尺度注意力机制,增强小目标特征信息;在预测框回归损失中使用NWD损失替换CIoU损失,采取Wasserstein距离度量小目标预测框与真值框的相似性,解决了IoU对小目标位置偏差敏感的问题,有效提升了小目标检测精度。实验结果表明:在小样本与小目标情况下,所提方法在输电线路故障数据集中mAP为51.1%,相较于YOLOv8s基线模型提升了8.2%,有效提升了故障识别精度,为小样本与小目标输电线路故障识别提供了新的解决思路与办法。
中图分类号:
[1]SHI Y D,WANG H M,JING C,et al.A Few-Shot Defect Detection Method for Transmission Lines Based on Meta-Attention and Feature Reconstruction[J].Applied Sciences,2023,13:5896. [2]WANG Z Y,GAO Q,LI D,et al.Insulator Anomaly DetectionMethod Based on Few-Shot Learning[J].IEEE Access,2021,9:94970-94980. [3]LIU C Y,WU Y Q.Research Progress of Vision DetectionMethods Based on Deep Learning for Transmission Lines[C]//Proceedings of the CSEE.2023:7423-7445. [4]TAO X,ZHANG D P,WANG Z H,et al.Detection of Power Line Insulator Defects Using Aerial Images Analyzed With Convolutional Neural Networks[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2020,50(4):1486-1498. [5]ZHOU M,LI B,WANG J,et al.Fault Detection Method ofGlass Insulator Aerial Image Based on the Improved YOLOv5[J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-10. [6]HAO S,AN B Y,MA X,et al.PKAMNet:A Transmission Line Insulator Parallel- Gap Fault Detection Network Based on Prior Knowledge Transfer and Attention Mechanism[J].IEEE Transactions on Power Delivery,2023,38(5):3387-3397. [7]ZHAI Y J,YANG K,et al.Disc Insulator Defect DetectionBased on Mixed Sample Transfer Learning[C]//Proceedings of the CSEE.2023:2867-2876. [8]LIU C Y,WU Y Q,LIU J J,et al.Insulator Faults Detection in Aerial Images from High-Voltage Transmission Lines Based on Deep Learning Model[J].Applied Sciences,2021,11(10):4647. [9]YI W,MA S,LI R.Insulator and Defect Detection Model Based on Improved Yolo-S[J].IEEE Access,2023,11:93215-93226. [10]WANG T,ZHAI Y D,LI Y H,et al.Insulator Defect Detection Based on ML-YOLOv5 Algorithm[J].Sensors,2024,24(1):204. [11]陈华杰,吕丹妮.一种基于逆迁移学习的小样本目标识别辅助数据挑选方法[P].CN112541539A,2021-03-23. [12]SAMET N,HICSONMEZ S,AKBAS E.HoughNet:Integrating Near and Long-Range Evidence for Visual Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(4):4667-4681. [13]JOCHER G.Ultralytics YOLOv8[EB/OL].[2023-07-05].https://github.com/ultralytics/ultralytics. [14]WANG C Y,BOCHKOVSKIY A,LIAO H M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J].arXiv:2207.02696,2023. [15]LIU S,QI L,QIN H F,et al.Path aggregation network for instance segmentation[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.2018:8759-8768. [16]OUYANG D L,HE S,ZHANG G Z,et al.Efficient Multi-Scale Attention Module with Cross-Spatial Learning[J].arXiv:2305.13563,2023. [17]HOU Q B,ZHOU D Q,FENG J S.Coordinate attention for efficient mobile network design[C]//IEEE Conference on Computer Vision and Pattern Recognition.2021:13708-13717. [18]ZHENG Z H,WANG P,LIU W,et al.Distance-IoU Loss:Faster and Better Learning for Bounding Box Regression[J].AAAI Conference on Artificial Intelligence,2020,34:12993-13000. [19]WANG J W,XU C,YANG W,et al.A Normalized GaussianWasserstein Distance for Tiny Object Detection[J].arXiv:2110.13389,2021. [20]CHENG G,YUAN X,YAO X W,et al.Towards Large-Scale Small Object Detection:Survey and Benchmarks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(11):13467-13488. [21]ZHANG Y F,REN W Q,ZHANG Z,et al.Focal and efficient IoU loss for accurate bounding box regression[J].Neurocomputing,2022,506:146-157. [22]GEVORGYAN Z.SIoU Loss:More Powerful Learning forBounding Box Regression[J].arXiv:2205.12740,2022. [23]YANG L X,ZHANG R Y,XIE X H.SimAM:A Simple,Parameter-Free Attention Module for Convolutional Neural Networks[C]//International Conference on Machine Learning.2021. [24]MISRA D,NALAMADA T,ARASANIPALAI A U,et al.Rotate to Attend:Convolutional Triplet Attention Module[C]//2021 IEEE Winter Conference on Applications of Computer Vision.2021:3138-3147. [25]REN S Q,HE K M,et al.Faster R-CNN:Towards real-time object detection with region proposal networks.IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149. [26]TERVEN J AND CORDOVA-ESPARZA D.A comprehensive review of YOLO:From YOLOv1 to YOLOv8 and beyond[J].arXiv:2304.00501,2023. |
|