计算机科学 ›› 2025, Vol. 52 ›› Issue (6A): 240900136-6.doi: 10.11896/jsjkx.240900136
叶明君1, 王姝鉴2
YE Mingjun1, WANG Shujian2
摘要: 在无人机技术迅猛发展的背景下,高效的路径规划策略成为提升无人机任务执行效能与安全性的关键。聚焦于无人机三维路径规划问题,提出一种基于多策略改进蜣螂优化算法(Multi-Strategy Dung Beetle Optimization,MDBO)的无人机三维路径规划方法。MDBO通过引入拉丁超立方采样初始化策略、平均差分变异策略,以及融合透镜成像反向学习与逐维优化的策略,显著提高了算法的收敛精度和收敛速度,增强了全局优化能力。通过MATLAB仿真实验,将MDBO与DBO,COA以及GWO算法在无人机路径规划问题上进行了对比。实验结果表明,对于构造的两个地图,MDBO求解的飞行路径长度平均值与DBO相比分别降低了5.1%和5.9%,且具有良好的收敛速度和稳定性,验证了所提出方法的有效性和优越性。
中图分类号:
[1]DING J R,DU C P,ZHAO Y,et al.UAV path planning algorithm based on improved artificial potential field method[J].Computer Applications,2016,36(1):287-290. [2]YILDIZ B,ASLAN M F,DURDU A,et al.Consensus-based virtual leader tracking swarm algorithm with GDRRT*-PSO for path-planning of multiple-UAVs[J].Swarm and Evolutionary Computation,2024,88:101612. [3]YE C,SHAO P,ZHANG S,et al.Three-dimensional unmanned aerial vehicle path planning utilizing artificial gorilla troops optimizer incorporating combined mutation and quadratic interpolation operators[J].ISA Transactions,2024,149:196-216. [4]HU G,ZHONE J,WEI G.SaCHBA_PDN:Modified honeybadger algorithm with multi-strategy for UAV path planning[J].Expert Systems with Applications,2023,223:119941. [5]GUO Q C,DU X Y,ZHANG Y Y,et al.Three-dimensional path planning for unmanned aerial vehicles based on improved whale algorithm[J].Computer Science,2021,48(12):304-311. [6]CHENG L,LING G,LIU F,et al.Application of uniform experimental design theory to multi-strategy improved sparrow search algorithm for UAV path planning[J].Expert Systems with Applications,2024,255:124849. [7]JIANG W,LYU Y,LI Y,et al.UAV path planning and collisionavoidance in 3D environments based on POMPD and improved grey wolf optimizer[J].Aerospace Science and Technology,2022,121:107314. [8]XU X,XIE C,LUO Z,et al.A multi-objective evolutionary algo-rithm based on dimension exploration and discrepancy evolution for UAV path planning problem[J].Information Sciences,2024,657:119977. [9]PHUNG M D,HA Q P.Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[J].Applied Soft Computing,2021,107:107376. [10]OUYANG C T,ZHU D L,WANG F Q,et al.UAV path planning based on refractive sparrow search algorithm[J].Electronics Optics & Control,2022,29(6):25-31. [11]YU Z,SI Z,LI X,et al.A novel hybrid particle swarm optimization algorithm for path planning of UAVs[J].IEEE Internet of Things Journal,2022,9(22):22547-22558. [12]XU C,DUAN H,LIU F.Chaotic artificial bee colony approach to Uninhabited Combat Air Vehicle(UCAV) path planning[J].Aerospace science and technology,2010,14(8):535-541. [13]CHAI X,ZHENG Z,XIAO J,et al.Multi-strategy fusion differ-ential evolution algorithm for UAV path planning in complex environment[J].Aerospace Science and Technology,2022,121:107287. [14]XUE J,SHEN B.Dung beetle optimizer:A new meta-heuristic algorithm for global optimization[J].The Journal of Supercomputing,2023,79(7):7305-7336. [15]YU H,CHUNG C Y,WONG K P,et al.Probabilistic load flow evaluation with hybrid latin hypercube sampling and cholesky decomposition[J].IEEE Transactions on Power Systems,2009,24(2):661-667. [16]LAYE B,ABDESSLE M.Differential evolution algorithms withnovel mutations,adaptive parameters,and Weibull flight operator[J].Soft Computing,2024,28(11):7039-7091. [17]XIAO Y N,CUI H,HUSSIEN A G,et al.MSAO:A multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications[J].Advanced Engineering Informatics,2024,61:102464. [18]WANG L J,YIN Y L,ZHONG Y W.Cuckoo search algorithm with dimension by dimension improvement[J].Ruan Jian Xue Bao/Journal of Software,2013,24(11):2687-2698. |
|