计算机科学 ›› 2025, Vol. 52 ›› Issue (11): 131-140.doi: 10.11896/jsjkx.241000017
陈崇杨, 彭力, 杨杰龙
CHEN Chongyang, PENG Li, YANG Jielong
摘要: 针对无人机航拍视角下目标尺寸小、特征信息不足、分布密集以及因遮挡导致的检测精度低的问题,提出一种基于特征增强与上下文融合的无人机小目标检测算法。首先,构建增强特征提取的轻量化主干网络,利用特征提取轻量块高效提取特征信息,并设计细粒度通道融合块有效地避免目标细粒度特征的丢失,该主干网络提高了模型的特征提取能力和推理速度;其次,构建小目标检测头,充分提取小目标的位置信息和细节特征;然后,利用自适应选择空间注意力模块,自适应地调整不同目标所需的感受野,以充分利用航拍小目标周围丰富的上下文信息;最后,引入基于最小点距离的边界框回归损失函数MPDIoU,进一步提高密集小目标检测的精度。所提算法在VisDrone2019数据集上的mAP0.5和mAP0.5:0.95达到了46.7%和28.6%,较基准网络YOLOv8s分别提高了8.5%和5.9%;同时算法的参数量较YOLOv8s减少了23.4%,可高效适用于无人机航拍密集小目标检测场景。
中图分类号:
| [1]MITTAL P,SINGH R,SHARMA A.Deep learning-based object detection in low-altitude UAV datasets:A survey[J].Image and Vision computing,2020,104:104046. [2]LIU Y,SUN P,WERGELES N,et al.A survey and performanceevaluation of deep learning methods for small object detection[J].Expert Systems with Applications,2021,172:114602. [3]LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shotmultibox detector[C]//Proceedings of the 14th European Conference on Computer Vision.Cham:Springer,2016:21-37. [4]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [5]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [6]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7263-7271. [7]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:Optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [8]GLENN-JOCHER.YOLOv5[EB/OL].(2021-10-12)[2024-09-12].https://github.com/ultralytics/yolov5. [9]GE Z,LIU S,WANG F,et al.Yolox:exceeding yolo series in 2021[J].arXiv:2107.08430,2021. [10]LI C,LI L,JIANG H,et al.YOLOv6:a single-stage object detection framework for industrial applications[J].arXiv:2209.02976,2022. [11]WANG C Y,BOCHKOVSKIY A,LIAO H Y.YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:7464-7475. [12]GLENN-JOCHER.YOLOv8[EB/OL].(2023-09-27)[2024-09-12].https://github.com/ultralytics/ultralytics. [13]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587. [14]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems.2015. [15]ZHU X,LYU S,WANG X,et al.TPH-YOLOv5:improvedYOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:2778-2788. [16]FENG Z Q,XIE Z J,BAO Z W,et al.Real-time dense small object detection algorithm for UAV based on improved YOLOv5[J].Acta Aeronautica et Astronautica Sinica,2023,44(7):251-265. [17]YANG C,HUANG Z,WANG N.QueryDet:cascaded sparsequery for accelerating high-resolution small object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:13668-13677. [18]XIE C H,WU J M,XU H Y.Small object detection algorithm based on improved YOLOv5 in UAV image[J].Computer Engineering and Applications,2023,59(9):198-206. [19]ZHANG Y,WU C,ZHANG T,et al.Self-attention guidance and multiscale feature fusion-based UAV image object detection[J].IEEE Geoscience and Remote Sensing Letters,2023,20:1-5. [20]DOU Z,HU C G,LIANG J Y,et al.Lightweight target detection algorithm based on improved Yolov4-tiny[J].Computer Science,2023,50(S1):484-490. [21]ZHANG J,LEI J,XIE W,et al.SuperYOLO:super resolution assisted object detection in multimodal remote sensing imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2023,61:1-15. [22]SILIANG M,YONG X.MPDIoU:a loss for efficient and accurate bounding box regression[J].arXiv:2307.07662,2023. [23]ZENG S,YANG W,JIAO Y,et al.SCA-YOLO:A new small object detection model for UAV images[J].The Visual Compu-ter,2024,40(3):1787-1803. [24]ZHU L,WANG X,KE Z,et al.BiFormer:vision transformerwith bi-level routing attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:10323-10333. [25]JIANG L,YUAN B,DU J,et al.MFFSODNet:Multi-Scale Feature Fusion Small Object Detection Network for UAV Aerial Images[J].IEEE Transactions on Instrumentation and Mea-surement,2024,73:5015214. [26]ZHU J,WU Y,MA T.Multi-Object Detection for Daily Road Maintenance Inspection With UAV Based on Improved YOLOv8[J].IEEE Transactions on Intelligent Transportation Systems,2024,25(11):16548-16560. [27]OUYANG D,HE S,ZHANG G,et al.Efficient multi-scale attention module with cross-spatial learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2023:1-5. [28]MA S,LU H,LIU J,et al.LAYN:Lightweight multi-scale attention yolov8 network for small object detection[J].IEEE Access,2024,12:292924-29307. [29]ZHOU Q,SHI H,XIANG W,et al.DPNet:Dual-path network for real-time object detection with lightweight attention[J].IEEE Transactions on Neural Networks and Learning Systems,2025,36(3):4504-4518. [30]CHEN J,KAO S,HE H,et al.Run,Don't Walk:chasing higher FLOPS for faster neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:12021-12031. [31]LIU Y,ZHANG K H,FAN J Q,et al.Progressively aggregating multi-scale scene context features for camouflaged object detection[J].Journal of Computer Science and Technology,2022,45(12):2637-2651. [32]DU D,ZHU P,WEN L,et al.VisDrone-DET2019:the visionmeets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops.2019. [33]EVERINGHAM M,VAN GOOL L,WILLIAMS C K I,et al.The pascal visual object classes(voc) challenge[J].International Journal of Computer Vision,2010,88:303-338. |
|
||