计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241000155-9.doi: 10.11896/jsjkx.241000155
高玉立, 王宝会
GAO Yuli, WANG Baohui
摘要: 高铁接触网是电气化铁路系统中的关键导线,保障其导线的正常状态对于维持铁路的稳定运营至关重要。传统的人工巡检方式效率低下且易漏检,随着深度学习技术的快速发展,利用计算机视觉技术实现自动化检测已成为迫切需求。针对高铁接触网室外多种复杂背景和多种环境(如夜晚、白天)下导线状态检测的挑战,文中提出了一种基于DEFM(细节增强融合模块)与YOLOv8结合的高铁接触网导线状态检测算法,通过结合空间和通道注意力机制将红外与可见光图像融合,引入多模态融合和Shuffle Attention注意力机制。通过在真实数据集上进行实验,验证了该模型在检测精度、召回率等性能指标上的显著提升。结果表明,改进后的算法相比原始算法,召回率提升了 0.94%,mAP 提升了 2.09%。经实际测试,基于DEFM-YOLOv8的检测模型在面对高铁接触网复杂背景时,无论是在夜晚还是白天场景下,均能够取得良好的检测效果。
中图分类号:
| [1]ZHANG T.Thoughts on Enhancing the Emergency Repair Capacity for Large-scale Faults in High-Speed Railway Catenary [J].Electrified Railway2023,34(S1):114-117. [2]LIU H D.Software Design for Defect Image Recognition ofHigh-Speed Railway Catenary Components Based on Deep Learning Calculate [D].Shijiazhuang:Shijiazhuang Tiedao University,2023. [3]REN S,HE K,GIRSHICK R,et al.Towards real-time object detection with region proposal networks,Adv[J].Neural Inf.Process,2015,28. [4]HE K,GKIOXARI G,DOLLÁR P,et al.Mask r-cnn[C]//Proceedings of the IEEE international conference on computer vision.2017:2961-2969. [5]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,Part I 14.Springer International Publishing,2016:21-37. [6]JIANG P,ERGU D,LIU F,et al.A Review of Yolo algorithm developments[J].Procedia Computer Science,2022,199:1066-1073. [7]WANG Y,WANG C,ZHANG H,et al.Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery[J].Remote Sensing,2019,11(5):531. [8]HALTMEIER M,NEUMANN L,RABANSER S.Single-stagereconstruction algorithm for quantitative photoacoustic tomography[J].Inverse Problems,2015,31(6):065005. [9]LI Y,LIANG S,BAI B,et al.Detecting and tracking dim small targets in infrared image sequences under complex backgrounds[J].Multimedia Tools And applications,2014,71:1179-1199. [10]ZHANG Q L,YANG Y B.Sa-net:Shuffle attention for deep convolutional neural networks[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2021).IEEE,2021:2235-2239. [11]HUSSAIN M.YOLO-v1 to YOLO-v8,the rise of YOLO and its complementary nature toward digital manufacturing and industrial defect detection[J].Machines,2023,11(7):677. [12]MAO Q C,SUN H M,LIU Y B,et al.Mini-YOLOv3:real-time object detector for embedded applications[J].IEEE Access,2019,7:133529-133538. [13]JOCHER G,CHAURASIA A,STOKEN A,et al.ultralytics/yolov5:v6.2-yolov5 classification models,apple m1,reproducibility,clearml and deci.ai integrations[J].Zenodo,2022. [14]MA W,WANG K,LI J,et al.Infrared and visible image fusion technology and application:A review[J].Sensors,2023,23(2):599. [15]DESHMUKH M,BHOSALE U.Image fusion and image quality assessment of fused images[J].International Journal of Image Processing(IJIP),2010,4(5):484. [16]ZHANG X,LI L,DI D,et al.SERNet:Squeeze and excitation residual network for semantic segmentation of high-resolution remote sensing images[J].Remote Sensing,2022,14(19):4770. [17]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. |
|
||