计算机科学 ›› 2025, Vol. 52 ›› Issue (11A): 241000184-7.doi: 10.11896/jsjkx.241000184
陈海燕, 马舒豪, 张振霄
CHEN Haiyan, MA Shuhao, ZHANG Zhenxiao
摘要: 遥感图像目标检测在国土资源调查、灾害监测、军事侦察等领域具有广泛的应用。针对SSD(Single Shot MultiBox Detector)模型在遥感图像目标检测时难以有效提取小目标的特征,从而对小目标检测不利的问题,文中提出了一种基于重参数化与多尺度特征融合的RMSFF-SSD(Reparameterization Multi-Scale Feature Fusion SSD)遥感图像目标检测模型,该模型在SSD模型的基础上进行改进。首先,对SSD的骨干特征提取网络中的卷积层使用具有重参数化性质的卷积来提取特征,同时在重参数化卷积中引入SE注意力机制,以捕获通道之间的依赖关系并抑制无用的特征;其次,将特征提取网络中提取到的特征用多级特征融合的方式对全局信息与局部细节信息进行融合,来进一步增强目标的特征;最后,将融合后所获得的6个不同尺度的特征图用于目标检测。在NWPU VHR-10数据集上进行目标检测实验,实验结果表明,所提出的RMSFF-SSD512目标检测模型平均精度为89.7%,显著高于DSSD(78.7%)模型、FSSD(86.7%)模型、FPN(68.9%)模型、Faster R-CNN(44.2%)模型和YOLOv5(83.7%)模型。
中图分类号:
| [1]FAN L L,ZHAO H W,ZHAO H Y,et al.Survey of target detection based on deep convolutional neural networks[J].Opt Precision Eng,2020,28(5):1152-1164. [2]FANG L P,HE H J,ZHOU G M.Research overview of object detection methods[J].Computer Engineering and Applications,2018,54(13):11-18. [3]ZHAO Z Q,ZHENG P,XU S T,et al.Object detection with deep learning:A review[J].IEEE Transactions on Neural Networks and Learning Systems,2019,30(11):3212-3232. [4]CHEN Y T,LI Y Y,LV S L,et al.Research on oil spill monitoring of multi-source remote sensing image based on deep semantic segmentation[J].Opt Precision Eng,2020,28(5):1165-1176. [5]XIAO Y,TIAN Z,YU J,et al.A review of object detection based on deep learning[J].Multimedia Tools and Applications,2020,79:23729-23791. [6]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//Proceedings of the:Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,Part I 14.2016:21-37. [7]REN S,HE K,GIRSHICK R,et al.Faster R-CNN:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149. [8]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:14091556,2014. [9]DING X,ZHANG X,MA N,et al.Repvgg:Making vgg-styleconvnets great again[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13733-13742. [10]PENG Y F,CHEN Y K,ZHAO T,et al.Detection of Object in UAV Aerial Photography Based on Reparameterized Attention[J].Electronics Optics and Control,2024,31(9):81-86. [11]GAO D Y,CHEN T D,MIAO L.Improved Road Object Detection Algorithm for YOLOv8n[J].Computer Engineering and Applications,2024,60(16):186-197. [12]DING X,ZHANG X,HAN J,et al.Diverse branch block:Building a convolution as an inception-like unit[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10886-10895. [13]CHENG Y,WANG W,ZHANG W,et al.A multi-feature fusion and attention network for multi-scale object detection in remote sensing images[J].Remote Sensing,2023,15(8):2096. [14]FU C-Y,LIU W,RANGA A,et al.Dssd:Deconvolutional single shot detector[J].arXiv:170106659,2017. [15]LI Z,YANG L,ZHOU F.FSSD:feature fusion single shotmultibox detector[J].arXiv:171200960,2017. [16]PAN H,JIANG J,CHEN G.TDFSSD:Top-down feature fusion single shot MultiBox detector[J].Signal Processing:Image Communication,2020,89:115987-115996. [17]TONG X W,ZHANG G J.Camouflaged Object Detection Network Based on Global Multi-scale Feature Fusion[J].Pattern Recognition and Artificial Intelligence,2022,35(12):1122-1130. [18]WANG C,YANG S,ZHOU L,et al.Research on metal gearend-face defect detection method onadaptive multi-scale feature fusion network[J].Journal of Electronic Measurement and Instrumentation,2023,37(10):153-163. [19]LIU C,ZHANG S,HU M,et al.Object Detection in RemoteSensing Images Based on Adaptive Multi-Scale Feature Fusion Method[J].Remote Sensing,2024,16(5):907. [20]ZOU F,XIAO W,JI W,et al.Arbitrary-oriented object detection via dense feature fusion and attention model for remote sensing super-resolution image[J].Neural Computing and Applications,2020,32:14549-14562. [21]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [22]GUO C,FAN B,ZHANG Q,et al.Augfpn:Improving multi-scale feature learning for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:12595-12604. [23]CHENG G,HAN J,ZHOU P,et al.Multi-class geospatial object detection and geographic image classification based on collection of part detectors[J].ISPRS Journal of Photogrammetry and Remote Sensing,2014,98:119-132. [24]ALTHOFF L,FARIAS M C,WEIGANG L.Once learning for looking and identifying based on yolo-v5 object detection[C]//Proceedings of the Brazilian Symposium on Multimedia and the Web.2022:298-304. [25]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2117-2125. |
|
||