计算机科学 ›› 2025, Vol. 52 ›› Issue (12): 260-270.doi: 10.11896/jsjkx.241100081

• 人工智能 • 上一篇    下一篇

基于邻域匹配概率与类型商图的实体对齐解释方法

张晓明, 邱菁菁, 王会勇   

  1. 河北科技大学信息科学与工程学院 石家庄 050018
  • 收稿日期:2024-11-13 修回日期:2025-03-04 出版日期:2025-12-15 发布日期:2025-12-09
  • 通讯作者: 王会勇(wanghuiyong815@163.com)
  • 作者简介:(zhangxiaom@hebust.edu.cn)
  • 基金资助:
    河北省自然科学基金(F2022208002);石家庄市基础研究计划(241790867A)

Explanation Method for Entity Alignment Based on Neighborhood Matching Probability andType Quotient Graph

ZHANG Xiaoming, QIU Jingjing, WANG Huiyong   

  1. College of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
  • Received:2024-11-13 Revised:2025-03-04 Published:2025-12-15 Online:2025-12-09
  • About author:ZHANG Xiaoming,born in 1975,Ph.D,professor,is a member of CCF(No.30537M).His main research interests include knowledge graph,semantic computing and multi-modal knowledge fusion.
    WANG Huiyong,born in 1980,Ph.D,associate professor,is a member of CCF(No.42025M).His main research interests include knowledge graph and computer vision.
  • Supported by:
    This work was supported by the Natural Science Foundation of Hebei Province,China(F2022208002) and Shijiazhuang Basic Research Program(241790867A).

摘要: 近年来,出现了多种基于嵌入的实体对齐方法,此类方法通过将实体和关系映射到低维向量空间,并计算这些向量表示来实现实体对齐。尽管这些方法都取得了很好的性能,但对其可解释性的研究相对较少。因此,提出了一种事后解释的实体对齐算法PE-EA,为基于知识图嵌入的实体对齐模型的预测结果生成解释。该方法首先通过计算知识图谱中实体及其关系的连接数来评估其功能性,进而量化实体邻域结构的重要性。之后,结合实体的功能性与实体的嵌入向量计算关系的嵌入向量,据此获取关系对的匹配概率。然后,根据模型预测实体对的邻域信息,计算邻域中候选解释对的匹配概率,筛选出预测实体对的解释三元组,将它们组合成解释子图。最后,引入类型商图概念,将解释子图抽象化,压缩数据并简化解释生成过程,从而在减少候选解释数量的同时,提升解释的质量和有效性。在5个常用的实验数据集上,使用fidelity和sparsity两种评价指标验证了模型生成的解释有较高的准确性和简洁性。

关键词: 实体对齐, 可解释性, 邻域结构, 匹配概率, 类型商图

Abstract: In recent years,a variety of embedding-based entity alignment methods have emerged,which achieve entity alignment by mapping entities and relations into low-dimensional vector spaces and calculating these vector representations.Although these methods have achieved good performance,there are relatively few studies on their explainability.Therefore,a post hoc explanation algorithm for entity alignment(PE-EA) is proposed to generate explanations for the prediction results of the entity alignment model based on knowledge graph embedding.The method first evaluates the functionality of entities and their relations by calculating their connection counts in the knowledge graph,and then quantifies the importance of the entity neighborhood structure.Subsequently,the entity functionality is combined with the embedding vector to calculate the embedding vector of the relation,and the matching probability of the relation pair is obtained based on it.Then,based on the neighborhood information of the predicted entity pair,the matching probability of the candidate explanation pairs in the neighborhood is calculated,and the explanation triplets of the predicted entity pair are screened out and combined into an explanation subgraph.Furthermore,the concept of type quotient graph is introduced to abstract the explanatory subgraph,compress the data and simplify the explanation generation process,thereby reducing the number of candidate explanations while enhancing the quality and effectiveness of the explanations.On five commonly used experimental datasets,the two evaluation indicators of fidelity and sparsity are used to verify that the explanations generated by the proposed model have high accuracy and simplicity.

Key words: Entity alignment, Explainability, Neighborhood structure, Probabilistic mathching, Type quotient graph

中图分类号: 

  • TP391
[1]HUANG P,ZHANG M,ZHONG Z,et al.Representation Lear-ning for Entity Alignment in Knowledge Graph:A Design Space Exploration[C]//2024 IEEE 40th International Confe-rence on Data Engineering(ICDE).IEEE,2024:3462-3475.
[2]ZHANG T C,TIAN X,SUN X H,et al.Overview on Know-ledge Graph Embedding Technology Research[J].Journal of Software,2023,34(1):277-311.
[3]ZHU B,WANG R,WANG J,et al.A survey:knowledge graph entity alignment research based on graph embedding[J].Artificial Intelligence Review,2024,57(9):1-58.
[4]VAN DER VELDEN B H M,KUIJF H J,GILHUIJS K G A,et al.Explainable artificial intelligence(XAI) in deep learning-based medical image analysis[J].Medical Image Analysis,2022,79:102470.
[5]CHOWDHURY T,RAHIMI R,ALLAN J.Equi-explanationmaps:concise and informative global summary explanations[C]//Proceedings of the 2022 ACM Conference on Fairness,Accountability,and Transparency.2022:464-472.
[6]LAMPRIDIS O,GUIDOTTI R,RUGGIERI S.Explaining sentiment classification with synthetic exemplars and counter-exemplars[C]//International Conference on Discovery Science.Cham:Springer,2020:357-373.
[7]DOU H,ZHANG L M,HAN F,et al.Survey on Convolutional Neural Network Interpretability[J].Journal of Software,2024,35(1):159-184.
[8]FAN Y,YAO Y,JOE W C.Gcn-se:Attention as explainability for node classification in dynamic graphs[C]//2021 IEEE International Conference on Data Mining(ICDM).IEEE,2021:1060-1065.
[9]LI X,SAÚDE J.Explain graph neural networks to understand weighted graph features in node classification[C]//International Cross-Domain Conference for Machine Learning and Knowledge Extraction.Cham:Springer,2020:57-76.
[10]ROSSI A,FIRMANI D,MERIALDO P,et al.Explaining linkprediction systems based on knowledge graph embeddings[C]//Proceedings of the 2022 International Conference on Management of Data.2022:2062-2075.
[11]CHEN M,TIAN Y,YANG M,et al.Multilingual knowledge graph embeddings for cross-lingual knowledge alignment[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence(IJCAI).2017:1511-1517.
[12]SUN Z,HU W,ZHANG Q,et al.Bootstrapping entity alignment with knowledge graph embedding[C]//IJCAI.2018.
[13]WANG Z,LV Q,LAN X,et al.Cross-lingual knowledge graph alignment via graph convolutional networks[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:349-357.
[14]MAO X,WANG W,WU Y,et al.Boosting the speed of entityalignment 10×:Dual attention matching network with norma-lized hard sample mining[C]//Proceedings of the Web Confe-rence 2021.2021:821-832.
[15]MAO X,WANG W,WU Y,et al.From alignment to assignment:Frustratingly simple unsupervised entity alignment[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.2021:2843-2853.
[16]JI G S,ZHU Y C,WANG Y,et al.Multi-depth joint entityalignment based on textualinformationmulti-depth joint entity alignment based on textual information[J].Applied Intelligence,2023,51:8896-8912.
[17]MAO X,WANG W,WU Y,et al.LightEA:A Scalable,Robust,and Interpretable Entity Alignment Framework via Three-view Label Propagation[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2022:825-838.
[18]LUO Y,CHEN Z,GUO L,et al.ASGEA:Exploiting LogicRules from Align-Subgraphs for Entity Alignment[J].arXiv:2402.11000,2024.
[19]XU C,CHENG J,ZHANG F.P-NAL:an Effective and Interpretable Entity Alignment Method[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.2024:13752-13772.
[20]TRISEDYA B D,SALIM F D,CHAN J,et al.i-Align:an interprtable knowledge graph alignment model[J].Data Mining and Knowledge Discovery,2023,37(6):2494-2516.
[21]YING Z,BOURGEOIS D,YOU J,et al.Gnnexplainer:Generating explanations for graph neural networks[C]//Proceedings of the Conference on Neural Information Processing Systems.2019:9244-9255.
[22]LUO D,CHENG W,XU D,et al.Parameterized explainer for graph neural network[J].Advances in Neural Information Processing Systems,2020,33:19620-19631.
[23]YUAN H,YU H,WANG J,et al.On explainability of graph neural networks via subgraph explorations[C]//International Conference on Machine Learning.PMLR,2021:12241-12252.
[24]PEZESHKPOUR P,TIAN Y,SINGH S.Investigating robust-ness and interpretability of link prediction via adversarial modifications[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computa tional Linguistics:Human Language Technologies.2019:3336-3347.
[25]ZHAO D,WAN G,ZHAN Y,et al.KE-X:Towards subgraph explanations of knowledge graph embedding based on know-ledge information gain[J].Knowledge-Based Systems,2023,278:110772.
[26]RIBEIRO M T,SINGH S,GUESTRIN C.“Why shouldi trust you?” Explaining the predictions of any classifier[C]//Procee-dings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:1135-1144.
[27]LUNDBERG S M,LEE S I.Aunified approach to interpreting model predictions[J].Advances in Neural Information Proces-sing Systems,2017,30:4768-4777.
[28]TIAN X,SUN Z,HU W.Generating Explanations to Understand and Repair Embedding-based Entity Alignment[C]//2024 IEEE 40th International Conference on Data Engineering(ICDE).IEEE,2024:2205-2217.
[29]XIN K,SUN Z,HUA W,et al.Informed multi-context entity alignment[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining.2022:1197-1205.
[30]ČEBIRIĆ Š,GOASDOUÉ F,KONDYLAKIS H,et al.Summarizing semantic graphs:a survey[J].The VLDB Journal,2019,28:295-327.
[31]SUN Z,HU W,LI C.Cross-lingual entity alignment via joint attribute-preserving embedding[C]//International Semantic Web Conference.Cham:Springer,2017:628-644.
[32]ZHANG R,TRISEDYA B D,LI M,et al.A benchmark andcomprehensive survey on knowledge graph entity alignment via representation learning[J].The VLDB Journal,2022,31(5):1143-1168.
[33]ZENG K,LI C,HOU L,et al.A comprehensive surveyof entity alignment for knowledge graphs[J].AI Open,2021,2:1-13.
[34]POPE P E,KOLOURI S,ROSTAMI M,et al.Explainabilitymethods for graph convolutional neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:10772-10781.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!