计算机科学 ›› 2025, Vol. 52 ›› Issue (10): 13-21.doi: 10.11896/jsjkx.250100136

• 数智赋能金融科技前沿 • 上一篇    下一篇

基于拓扑结构特征的投资组合构建研究

李瑞阳, 李庶祎, 杨越溪, 彭楚涵, 邢静雨, 乔高秀   

  1. 西南交通大学数学学院 成都 611756
  • 收稿日期:2025-01-21 修回日期:2025-05-06 出版日期:2025-10-15 发布日期:2025-10-14
  • 通讯作者: 乔高秀(gxqiao@home.swjtu.edu.cn)
  • 作者简介:(2637844500@qq.com)
  • 基金资助:
    中央高校基本科研业务费专项资金(202410613071,2682025ZTPY001);国家自然科学基金(72001180)

Research on Portfolio Construction Based on Topological Structure Features

LI Ruiyang, LI Shuyi, YANG Yuexi, PENG Chuhan, XING Jingyu, QIAO Gaoxiu   

  1. School of Mathematics,Southwest Jiaotong University,Chengdu 611756,China
  • Received:2025-01-21 Revised:2025-05-06 Online:2025-10-15 Published:2025-10-14
  • About author:LI Ruiyang,born in 2003,is a member of CCF(No.O3787G).His main research interests include data mining and deep learning.
    QIAO Gaoxiu,born in 1982,Ph.D,associate professor.Her main research interests include time series forecasting,derivatives pricing,machine learning and energy economics.
  • Supported by:
    Fundamental Research Funds for the Central Universities of Ministry of Education of China(202410613071,2682025ZTPY001) and National Natural Science Foundation of China(72001180).

摘要: 近年来,拓扑数据分析(Topological Data Analysis,TDA)在金融领域的应用逐渐显现出价值。TDA通过持久同调等方法构建复形,能有效量化数据的形状,以便提取数据信息,为时间序列分析,特别是金融时间序列的聚类与投资组合的构建提供了独特优势。基于此,通过采用TDA方法对中国股票市场的时间序列数据进行深入挖掘,结合聚类算法,并将其应用于投资组合的构建,分析其有效性。通过滑动窗口法进行验证,结果表明基于TDA(去噪)聚类的投资组合在回报风险比和稳定性方面表现良好,优于市场整体表现。研究表明,TDA方法可以更有效地挖掘股票数据中的信息,为投资者提供科学依据,从而取得最佳收益。

关键词: 拓扑数据分析, 投资组合, 时间序列, 聚类

Abstract: In recent years,the application of topological data analysis(TDA) in the financial field has gradually demonstrated its value.TDA,through methods such as persistent homology,constructing complexes that effectively quantify the shape of data,facilitating the extraction of data information.This provides unique advantages for time series analysis,particularly in the clustering of financial time series and the construction of portfolios.Based on this,by deeply mining the time series data of China's stock market using TDA methods,combined with clustering algorithms,and applying these insights to portfolio construction,the effectiveness of such approaches is analyzed.The results,validated through the sliding window method,indicate that portfolios constructed based on TDA(denoising) clustering perform well in terms of return-risk ratio and stability,outperforming the overall market.Therefore,the TDA method can more effectively mine information from stock data,providing a scientific basis for investors to optimize returns.

Key words: Topological data analysis,Portfolio,Time series,Clustering

中图分类号: 

  • TP399
[1]DAVID C S,EDELSBRUNNER H,JOHN H.Stability ofPersistence Diagrams[J].Discrete & Computational Geometry,2007,37(1):103-120.
[2]GIDEA M,KATZ Y.Topological Data Analysis of FinancialTime Series:Landscapes of Crashes[J].Physica A,2018,491:820-834.
[3]FANG X S.Research on Stock Market Crashes and Stock Price Volatility Based on Topological Data Analysis and Machine Learning[D].Hangzhou:Zhejiang University,2021.
[4]KARAN A,KAYGUN A.Time Series Classification Via Topo-logical Data Analysis[J].Expert Systems With Applications,2021,183,115326.
[5]KATZ Y A,BIEM A.Time-Resolved Topological Data Analysis of Market Instabilities[J].Physica A:Statistical Mechanics and Its Applications,2021,571:125816.
[6]DE GREGORIO A,IACUS S M.Clustering of Discretely Ob-served Diffusion Process[J].Computational Statistics & Data Analysis,2010,54(2):598-606.
[7]ZHAO C.Comparative Study on Clustering Analysis Methods of Financial Time Series:An Empirical Analysis Based on Stock Return Rates of Listed Companies[J].Times Finance,2013(17):56-59.
[8]LI X F.Research on Cluster Analysis Based on Time SeriesCharacteristics In Margin Trading and Short Selling as Well as A-Share Transactions[D].Jinan:Shandong University,2017.
[9]GIDEA M,KATZ Y.Topological Data Analysis of FinancialTime Series:Landscapes of Crashes[J].Physica A:Statistical Mechanics and Its Applications,2018,491:820-834.
[10]MAJUMDAR S,LAHA A K.Clustering and Classification ofTime Series Using Topological Data Analysis with Applications to Finance[J].Expert Systems With Applications,2020,162:113868.
[11]GOEL A,PASRICHA P,MEHRA A.Topological Data Analysis in Investment Decisions[J].Expert Systems With Applications,2020,147:113222.
[12]PAN Y,CHENG X J.Optimal Portfolio Plan Based on Clustering Grouping Method to Modify Covariance Matrix[J].Journal of the University of Science and Technology of China,2014,44(3):244-247,256.
[13]DE LUCA G,ZUCCOLOTTO P.Dynamic Tail DependenceClustering of Financial Time Series[J].Statistical Papers,2017,58:641-657.
[14]LI X Y,WANG B H.Construction and Comparative Study ofthe Robust Sharpe Single-Index Model[J].Journal of Applied Statistics and Management,2020,39(3):544-555.
[15]ZHANG P,LI J X,CUI S L.Research on M-SV Portfolio Decision-Making Based on Machine Learning Prediction[J].Mathematics in Practice and Theory,2024,54(5):70-82.
[16]ZHANG P,ZHU S H,CUI S L.Three-Factor Mean-Variance Portfolio Optimization Based on BP Neural Network [J/OL].[2025-02-20].http://kns.cnki.net/kcms/detail/11.2018.o1.20250106.1749.032.html.
[17]BUBENIK P.Statistical Topological Data Analysis Using Persistence Landscapes[J].Journal of Machine Learning Research,2015,16(1):77-102.
[18]BUBENIK P,DLOTKO P.A Persistence Landscapes Toolboxfor Topological Statistic[J].Journal of Symbolic Computation,2017,78:91-144.
[19]WANG R.Research on Portfolio Optimization Based on Data Denoising and Stock Price Prediction[D].Dalian:Dongbei University of Finance and Economics,2023.
[20]MEI J.Research on Denoising of Financial Time Series Based on Multiscale Threshold Method[J].Financial Economy,2013(12):155-156.
[21]CAI X S,DAI J B,LI X N.Application of Median Filtering and Mean Filtering in Barcode Denoising[J].Journal of Changchun Normal University(Natural Science Edition),2008(8):40-42.
[22]ZHENG J H.Research on Denoising Method of Ghost Imaging Based on Mean and Median Filtering[D].Nanjing:Nanjing University of Posts and Telecommunications,2023.
[23]WANG Y,WAN X Y,TAO Y Z,et al.Collaborative Filtering Recommendation Algorithm Based on K-Medoids Item Clustering[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2017,29(4):521-526.
[24]CHEN Y,KEOGH E,HU B,et al.The UCR Time Series Classification Archive[EB/OL].https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.
[25]ZHANG Y,GE P S,CUI F L,et al.Obstacle Detection Based on Improved Euclidean Clustering for Lidar[J].Journal of Dalian Nationalities University,2021,23(3):223-227.
[26]TAN Z L,YUAN H,WANG F H.Similarity Search Algorithm Based on DWT[J].Statistics & Information Forum,2023,38(1):3-15.
[27]HE L,CHEN L,JI S S,et al.Anomaly Detection Method for Continuous Liquid Level Monitoring Data Based on K-Shape Clustering[J].China Water & Wastewater,2023,39(11):56-61.
[28]JIANG W F.Research on Optimal Portfolio Based on China'sCarbon Trading Sector in The Stock Market-An Empirical Study and Optimization of Markowitz Portfolio Theory Under Principal Component Analysis[J].China Collective Economy,2023(25):83-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!