计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 106-118.doi: 10.11896/jsjkx.250300037
刘思行1,2, 许硕洋3, 徐鹤1,3, 季一木1,3
LIU Sixing1,2, XU Shuoyang3, XU He1,3, JI Yimu1,3
摘要: 随着传感器技术的进步,血糖监测从传统的单点采集发展为连续动态监测(CGM),通过介入式葡萄糖传感器实时监测间质液葡萄糖浓度。血糖传感器的运行状态对监测准确性至关重要,但传感器故障识别面临类别不平衡问题,导致机器学习模型性能下降。基于此,提出了一种结合数据预处理、特征工程和模型集成的优化策略。首先,通过缺失值填补和噪声处理提升数据的完整性和可靠性;其次,利用合成少数类过采样技术(SMOTE)对少数类样本进行过采样,缓解类别不平衡问题;最后,采用堆叠泛化(Stacking)的集成学习方法,结合基于焦点损失函数(Focal Loss)优化的极端梯度提升(XGBoost)和类别特征梯度提升(CatBoost)集成基分类器,与逻辑回归(LR)元分类器构建双层模型,进一步提升故障监测的准确性。为了证明所提出模型的有效性,将该模型的预测结果与其他模型进行了对比,包括基于Focal Loss的单一XGBoost,及其分别与SVM,KNN,LightGBM作为基分类器构建的集成模型等。研究结果表明,提出的基于Focal Loss的XGBoost和 CatBoost模型在传感器故障分类任务中表现良好,PR曲线和ROC曲线效果均优于其他模型,精确度和召回率分别为0.925 0和0.923 8。
中图分类号:
[1]TEHRANI F,TEYMOURIAN H,WUERSTLE B,et al.An Integrated Wearable Microneedle Array for the Continuous Monitoring of Multiple Biomarkers in Interstitial Fluid[J].Nature Biomedical Engineering,2022,6(11):1214-1224. [2]WANG X T,LIU X Y.Fault Detection for Electro Hydraulic Position Servo System Based on Kernel Regression Interval Model[J].Journal of Xinyang Normal University(Natural Science Edition),2024,37(2):252-258. [3]MAAN H,ZHANG L,YU C,et al.Characterizing the Impacts of Dataset Imbalance on Single-Cell Data Integration[J].Nature Biotechnology,2024,42:1899-1908. [4]LE T T H,OKTIAN Y E,KIM H.XGBoost for ImbalancedMulticlass Classification-Based Industrial Internet of Things Intrusion Detection Systems[J].Sustainability,2022,14(14):8707. [5]FAN C,LI C,PENG Y,et al.Fault Diagnosis of Vibration Sensors Based on Triage Loss Function-Improved XGBoost[J].Electronics,2023,12(21):4442. [6]WANG C,DENG C,WANG S.Imbalance-XGBoost:LeveragingWeighted and Focal Losses for Binary Label-Imbalanced Classification with XGBoost[J].Pattern Recognition Letters,2020,136:190-197. [7]WANG Z,LOU S,LIANG S,et al.Multi-Class DisturbanceEvents Recognition Based on EMD and XGBoost in Φ-Otdr[J].IEEE Access,2020,8:63551-63558. [8]BEN JABEUR S,STEF N,CARMONA P.Bankruptcy Prediction Using the XGBoost Algorithm and Variable Importance Feature Engineering[J].Computational Economics,2023,61(2):715-741. [9]SHARMA H,HARSORA H,OGUNLEYE B.An OptimalHouse Price Prediction Algorithm:XGBoost[J].Analytics,2024,3(1):30-45. [10]OUKHOUYA H,KADIRI H,EL HIMDI K,et al.Forecasting International Stock Market Trends:XGBoost,LSTM,LSTM-XGBoost,and Backtesting XGBoost Models[J].Statistics,Optimization & Information Computing,2024,12(1):200-209. [11]ZHAO C,PENG R,WU D.Bagging and Boosting Fine-Tuning for Ensemble Learning[J].IEEE Transactions on Artificial Intelligence,2023,5(4):1728-1742. [12]MONDAL S,GHOSH S,NAG A.Brain Stroke Prediction Mo-del Based on Boosting and Stacking Ensemble Approach[J].International Journal of Information Technology,2024,16(1):437-446. [13]WONG W Y,HASIKIN K,KHAIRUDDIN M,et al.A Stacked Ensemble Deep Learning Approach for Imbalanced Multi-Class Water Quality Index Prediction[J].Computers Materials and Continua,2023,76:1361-1384. [14]SHUVO M M H,ISLAM S K.Deep Multitask Learning by Stacked Long Short-Term Memory for Predicting Personalized Blood Glucose Concentration[J].IEEE Journal of Biomedical and Health Informatics,2023,27(3):1612-1623. [15]AL-GHATTAS O,BAO J,SANZ-ALONSO D.Ensemble Kalman Filters with Resampling[J].SIAM/ASA Journal on Uncertainty Quantification,2024,12(2):411-441. [16]LANCE G,LEROY T,SERY J.Adaptive Extended Kalman Filter for Pemfc Membrane Water Content Estimation[J].International Journal of Hydrogen Energy,2024,71:1164-1173. [17]WONGVORACHAN T,HE S,BULUT O.A Comparison ofUndersampling,Oversampling,and SMOTE Methods for Dealing with Imbalanced Classification in Educational Data Mining[J].Information,2023,14(1):54. [18]KHLEEL N A A,NEHÉZ K.A Novel Approach for Software Defect Prediction Using CNN and GRU Based on SMOTE Tomek Method[J].Journal of Intelligent Information Systems,2023,60(3):673-707. [19]ELREEDY D,ATIYA A F,KAMALOV F.A Theoretical Distribution Analysis of Synthetic Minority Oversampling Technique(SMOTE) for Imbalanced Learning[J].Machine Lear-ning,2024,113(7):4903-4923. [20]KISHOR A,CHAKRABORTY C.Early and Accurate Prediction of Diabetics Based on Fcbf Feature Selection and SMOTE[J].International Journal of System Assurance Engineering and Management,2024,15(10):4649-4657. [21]BANO A,KÜNZLER J,WEHRLI F,et al.Clinical Evidence for High-Risk Ce-Marked Medical Devices for Glucose Management:A Systematic Review and Meta-Analysis[J].Diabetes,Obesity and Metabolism,2024,26(10):4753-4766. [22]YI M K,LEE W K,HWANG S O.A Human Activity Recognition Method Based on Lightweight Feature Extraction Combined with Pruned and Quantized CNN for Wearable Device[J].IEEE Transactions on Consumer Electronics,2023,69(3):657-670. [23]BUCKLEY T,GHOSH B,PAKRASHI V.A Feature Extraction & Selection Benchmark for Structural Health Monitoring[J].Structural Health Monitoring,2023,22(3):2082-2127. [24]AL-HADDAD L A,JABER A A,HAMZAH M N,et al.Vibration-Current Data Fusion and Gradient Boosting Classifier for Enhanced Stator Fault Diagnosis in Three-Phase Permanent Magnet Synchronous Motors[J].Electrical Engineering,2024,106(3):3253-3268. [25]WANG Y.Fractional Fourier Transform and Its Application[J].Theoretical and Natural Science,2024,42:8-12. [26]ZHANG Z,LI Y,WANG G,et al.Supervised Mineral Prospectivity Mapping Via Class-Balanced Focal Loss Function on Imbalanced Geoscience Datasets[J].Mathematical Geosciences,2023,55(7):989-1010. [27]HOSSAIN M S,BETTS J M,PAPLINSKI A P.Dual Focal Loss to Address Class Imbalance in Semantic Segmentation[J].Neurocomputing,2021,462:69-87. [28]TIAN J,TSAI P W,ZHANG K,et al.Synergetic Focal Loss for Imbalanced Classification in Federated XGBoost[J].IEEE Transactions on Artificial Intelligence,2023,5(2):647-660. [29]PASUPA K,VATATHANAVARO S,TUNGJITNOB S.Con-volutional Neural Networks Based Focal Loss for Class Imba-lance Problem:A Case Study of Canine Red Blood Cells Morphology Classification[J].Journal of Ambient Intelligence and Humanized Computing,2023,14(11):15259-15275. [30]EL-GHANDOUR M,OBAYYA M I.Pneumonia Detection inChest X-Ray Images Using an Optimized Ensemble with XGBoost Classifier[J].Multimedia Tools and Applications,2024,84:5491-5521. [31]DING H,YANG X Q,QI T Y.Hybrid Machine Learning Mo-dels Based on CatBoost Classifier for Assessing Students’ Academic Performance[J].International Journal of Advanced Computer Science and Applications,2024,15(7):94-106. [32]SUN Y.Explainable Prediction of Compressive Strength and Elastic Modulus for Concrete Containing Waste Foundry Sand Using Bayesian-Optimized XGBoost with 10-Fold Cross-Validation[J].Journal of Sustainable Metallurgy,2024,10(1):335-359. [33]ULLAH I,LIU K,YAMAMOTO T,et al.Electric Vehicle Energy Consumption Prediction Using Stacked Generalization:An Ensemble Learning Approach[J].International Journal of Green Energy,2021,18(9):896-909. [34]QARAEI M,BABBAR R.Meta-Classifier Free Negative Sam-pling for Extreme Multilabel Classification[J].Machine Lear-ning,2024,113(2):675-697. [35]AVCI D,SERT E,DOGANTEKIN E,et al.A New Super Resolution Faster R-CNN Model Based Detection and Classification of Urine Sediments[J].Biocybernetics and Biomedical Enginee-ring,2023,43(1):58-68. [36]CHANG W,WANG X,YANG J,et al.An Improved CatBoost-Based Classification Model for Ecological Suitability of Blueberries[J].Sensors,2023,23(4):1811. [37]KURANI A,DOSHI P,VAKHARIA A,et al.A Comprehensive Comparative Study of Artificial Neural Network(ANN) and Support Vector Machines(SVM) on Stock Forecasting[J].Annals of Data Science,2023,10(1):183-208. [38]MOHY-EDDINE M,GUEZZAZ A,BENKIRANE S,et al.An Efficient Network Intrusion Detection Model for Iot Security Using KNN Classifier and Feature Selection[J].Multimedia Tools and Applications,2023,82(15):23615-23633. [39]FANG Q,SHEN B,XUE J.A New Elite Opposite SparrowSearch Algorithm-Based Optimized LightGBM Approach for Fault Diagnosis[J].Journal of Ambient Intelligence and Humanized Computing,2023,14(8):10473-10491. [40]LIN L,MA X,CHEN C,et al.Imbalanced Industrial Load Identification Based on Optimized CatBoost with Entropy Features[J].Journal of Electrical Engineering & Technology,2024,19:4817-4832. [41]ZHUANG H,LEHNER F,DE GAETANO A T.Improved Diagnosis of Precipitation Type with LightGBM Machine Learning[J].Journal of Applied Meteorology and Climatology,2024,63(3):437-453. [42]BAHRANI P,MINAEI-BIDGOLI B,PARVIN H,et al.A New Improved KNN-Based Recommender System[J].The Journal of Supercomputing,2024,80(1):800-834. [43]ASSELMAN A,KHALDI M,AAMMOU S.Enhancing the Prediction of Student Performance Based on the Machine Learning XGBoost Algorithm[J].Interactive Learning Environments,2023,31(6):3360-3379. [44]LIANG H Y.Fault Diagnosis of Power Transformer Based on Stacked Sparse Autoencoder and XGBoost[J].Journal of Chongqing Technology and Business University(Natural Science Edition),2024,41(6):65-71. |
|