计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 241-248.doi: 10.11896/jsjkx.250700138

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于多阶段行人特征挖掘的轨迹预测方法

邓佳燕1,2, 田时瑞2, 刘香丽1, 欧阳红巍1, 焦韵嘉1, 段明星2,3   

  1. 1 湖南现代物流职业技术学院物流信息学院 长沙 410131
    2 湖南大学信息科学与工程学院 长沙 410012
    3 湖南大学国家超级计算长沙中心 长沙 410023
  • 收稿日期:2025-07-01 修回日期:2025-08-20 出版日期:2025-09-15 发布日期:2025-09-11
  • 通讯作者: 田时瑞(tsr@hnu.edu.cn)
  • 作者简介:(dengjiayan2016@163.com)
  • 基金资助:
    国家自然科学基金(62422205,U24A20255,62272149);湖南省自然科学基金(2024JJ8075)

Trajectory Prediction Method Based on Multi-stage Pedestrian Feature Mining

DENG Jiayan1,2, TIAN Shirui2, LIU Xiangli1, OUYANG Hongwei1, JIAO Yunjia1, DUAN Mingxing2,3   

  1. 1 College of Logistics Information,Hunan Modern Logistics College,Changsha 410131,China
    2 College of Computer Science and Electronic Engineering,Hunan University,Changsha 410012,China
    3 National Supercomputing Center in Changsha,Hunan University,Changsha 410023,China
  • Received:2025-07-01 Revised:2025-08-20 Online:2025-09-15 Published:2025-09-11
  • About author:DENG Jiayan,born in 1989,postgra-duate,is a professional member of CCF(No.Z9485M).Her main research interests include e-commerce,big data and deep learning.
    TIAN Shirui,born in 1992,Ph.D,is a member of CCF(No.N4760G).His main research interests include deep learning,object detection and tracking,and pedestrian trajectory prediction.
  • Supported by:
    National Natural Science Foundation of China(62422205,U24A20255,62272149) and Natural Science Foundation of Hunan Province,China(2024JJ8075).

摘要: 当前行人轨迹预测面临两大挑战:1)受多行人之间关联关系以及复杂环境状态影响而难以建模;2)模型规模变大,难以在有限计算资源场景下发挥出作用,如无人车等。为更好应对上述挑战,提出了一种多阶段行人轨迹预测框架(Multi-stage Pedestrian Trajectory Prediction,MSPP-Net)。该框架由学生模块、教师模块和社会交互模块3部分组成。首先,学生模块基于小波变换构建预测模型,分解行人轨迹为高频和低频特征,精准提取运动细节与全局趋势;同时,以轨迹、姿态和文本等多模态轨迹数据训练教师模型,学生模型通过蒸馏方式学习教师模型的知识,进而提升自身的预测性能;然后,构建基于动力学微分方程的社会交互模块,捕捉行人运动的动态特性,进一步增强预测合理性,形成最终的MSPP-Net预测模型;最后,在ETH/UCY和SDD数据集上进行了大量实验,结果表明,MSPP-Net在ADE和FDE指标上的预测精度分别提升12.50%/2.63%和19.30%/10.34%,优于主流方法,其参数量较教师模型减少64.47%。

关键词: 行人轨迹预测, 知识蒸馏, 小波变换, 动力学微分方程, Transformer

Abstract: Current pedestrian trajectory prediction faces two major challenges:1)the difficulty in modeling the interrelationships among multiple pedestrians and the impact of complex environmental states;2)the increased model scale,which hinders its effectiveness in resource-constrained scenarios such as autonomous vehicles.To address these challenges more effectively,this study proposes a Multi-stage Pedestrian Trajectory Prediction framework,abbreviated as MSPP-Net.The framework comprises three components:a student module,a teacher module,and a social interaction module.Firstly,the student module constructs a prediction model based on wavelet transforms,decomposing pedestrian trajectories into high-frequency and low-frequency features to accurately extract motion details and global trends.Simultaneously,the teacher model is trained on multimodal trajectory data,including trajectories,poses,text,and the student model enhances its prediction performance by learning from the teacher model through knowledge distillation.Secondly,a social interaction module based on dynamic differential equations is developed to capture the dynamic characteristics of pedestrian movements,further improving the rationality of predictions,thus forming the final MSPP-Net prediction model.Finally,extensive experiments on the ETH/UCY and SDD datasets demonstrate that MSPP-Net achieves improvements of 12.50%/2.63% and 19.30%/10.34% in ADE and FDE metrics,respectively,outperforming mainstream methods,while reducing the parameter count by 64.47% compared to the teacher model.

Key words: Pedestrian trajectory prediction, Knowledge distillation, Wavelet transform, Dynamic differential equations, Transformer

中图分类号: 

  • TP311
[1]TIAN S R,DUAN M X,DENG J Y,et al.MF-Net:A Multimodal Fusion Model for Fast Multi-object Tracking[J].IEEE Transactions on Vehicular Technology,2024,73(8):10948-10962.
[2]YUAN Y,WENG X,OU Y,et al.Agentformer:Agent-aware transformers for socio-temporal multi-agent forecasting[C]//ICCV.IEEE/CVF,2021:9813-9823.
[3]ALAHI A,GOEL K,RAMANATHAN V,et al.Social lstm:Human trajectory prediction in crowded spaces[C]//CVPR.IEEE,2016:961-971.
[4]SHI L,WANG L,ZHOU S,et al.Trajectory unified transformer for pedestrian trajectory prediction[C]//ICCV.IEEE,2023:9675-9684.
[5]CHEN G,CHEN Z,FAN S,et al.Unsupervised sampling promoting for stochastic human trajectory prediction[C]//CVPR.IEEE,2023:17874-17884.
[6]MONTI A,PORRELLO A,CALDERARA S,et al.How many observations are enough? knowledge distillation for trajectory forecasting[C]//CVPR.IEEE,2022:6553-6562.
[7]XU C,LI M,NI Z,et al.Groupnet:Multiscale hypergraph neural networks for trajectory prediction with relational reasoning[C]//CVPR.IEEE,2022:6498-6507.
[8]LI J,YANG L,CHEN Y,et al.MFAN:Mixing feature attention network for trajectory prediction[J].Pattern Recognition,2024,146:109997.
[9]YANG Z Y,YANG J,ZHOU Y,et al.Multimodal trajectory prediction for intelligent connected vehicles in complex road scenarios based on causal reasoning and driving cognition characteristics[J].Scientific Reports,2025,15(1):7259.
[10]CHEN W,SANG H,WANG J,et al.WTGCN:wavelet transform graph convolution network for pedestrian trajectory prediction[J].International Journal of Machine Learning and Cybernetics,2024,15(12):5531-5548.
[11]WANG H,ZHI W,BATISTA G,et al.Pedestrian trajectoryprediction using goal-driven and dynamics-based deep learning framework[J].Expert Systems with Applications,2025,271:126557.
[12]YUAN J,XIA Y.Vehicle Trajectory Prediction Based on Spatial-Temporal Graph Attention Convolutional Network[J].Computer Science,2024,51(12):157-165.
[13]NASERNEJAD P,SAYED T,ALSALEH R.Modeling pedestrian behavior in pedestrian-vehicle near misses:A continuous Gaussian Process Inverse Reinforcement Learning(GP-IRL) approach[J].Accident Analysis & Prevention,2021,161:106355.
[14]WANG H,ZHI W,BATISTA G,et al.Pedestrian trajectoryprediction using dynamics-based deep learning[C]//2024 IEEE ICRA.IEEE,2024:15068-15075.
[15]PEI Z,ZHANG J,ZHANG W,et al.Autofocusing for synthetic aperture imaging based on pedestrian trajectory prediction[J].IEEE TCSVT,2023,34(5):3551-3562.
[16]LI X B,CHEN P,SHUAI B,et al.Novel Predictive Approach to Trajectory-aware Online Edge Service Allocation in Edge Environment[J].Computer Science,2022,49(11):277-283.
[17]ZHANG Z,GUO D,ZHOU S,et al.Flight trajectory prediction enabled by time-frequency wavelet transform[J].Nature Communications,2023,14(1):5258.
[18]PELLEGRINI S,ESS A,SCHINDLER K,et al.You’ll never walk alone:Modeling social behavior for multi-target tracking[C]//ICCV.IEEE,2009:261-268.
[19]ROBICQUET A,SADEGHIAN A,ALAHI A,et al.Learningsocial etiquette:Human trajectory understanding in crowded scenes[C]//European Conference on Computer Vision.Cham:Springe,2016:549-565.
[20]CAESAR H,BANKITI V,LANG A H,et al.nuscenes:A multimodal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11621-11631.
[21]WILSON B,QI W,AGARWAL T,et al.Argoverse 2:Next generation datasets for self-driving perception and forecasting[J].arXiv:2301.00493,2023.
[22]LI J,YANG F,TOMIZUKA M,et al.Evolvegraph:Multi-agent trajectory prediction with dynamic relational reasoning[J].Advances in Neural Information Processing Systems,2020,33:19783-19794.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!