计算机科学 ›› 2025, Vol. 52 ›› Issue (9): 241-248.doi: 10.11896/jsjkx.250700138
邓佳燕1,2, 田时瑞2, 刘香丽1, 欧阳红巍1, 焦韵嘉1, 段明星2,3
DENG Jiayan1,2, TIAN Shirui2, LIU Xiangli1, OUYANG Hongwei1, JIAO Yunjia1, DUAN Mingxing2,3
摘要: 当前行人轨迹预测面临两大挑战:1)受多行人之间关联关系以及复杂环境状态影响而难以建模;2)模型规模变大,难以在有限计算资源场景下发挥出作用,如无人车等。为更好应对上述挑战,提出了一种多阶段行人轨迹预测框架(Multi-stage Pedestrian Trajectory Prediction,MSPP-Net)。该框架由学生模块、教师模块和社会交互模块3部分组成。首先,学生模块基于小波变换构建预测模型,分解行人轨迹为高频和低频特征,精准提取运动细节与全局趋势;同时,以轨迹、姿态和文本等多模态轨迹数据训练教师模型,学生模型通过蒸馏方式学习教师模型的知识,进而提升自身的预测性能;然后,构建基于动力学微分方程的社会交互模块,捕捉行人运动的动态特性,进一步增强预测合理性,形成最终的MSPP-Net预测模型;最后,在ETH/UCY和SDD数据集上进行了大量实验,结果表明,MSPP-Net在ADE和FDE指标上的预测精度分别提升12.50%/2.63%和19.30%/10.34%,优于主流方法,其参数量较教师模型减少64.47%。
中图分类号:
[1]TIAN S R,DUAN M X,DENG J Y,et al.MF-Net:A Multimodal Fusion Model for Fast Multi-object Tracking[J].IEEE Transactions on Vehicular Technology,2024,73(8):10948-10962. [2]YUAN Y,WENG X,OU Y,et al.Agentformer:Agent-aware transformers for socio-temporal multi-agent forecasting[C]//ICCV.IEEE/CVF,2021:9813-9823. [3]ALAHI A,GOEL K,RAMANATHAN V,et al.Social lstm:Human trajectory prediction in crowded spaces[C]//CVPR.IEEE,2016:961-971. [4]SHI L,WANG L,ZHOU S,et al.Trajectory unified transformer for pedestrian trajectory prediction[C]//ICCV.IEEE,2023:9675-9684. [5]CHEN G,CHEN Z,FAN S,et al.Unsupervised sampling promoting for stochastic human trajectory prediction[C]//CVPR.IEEE,2023:17874-17884. [6]MONTI A,PORRELLO A,CALDERARA S,et al.How many observations are enough? knowledge distillation for trajectory forecasting[C]//CVPR.IEEE,2022:6553-6562. [7]XU C,LI M,NI Z,et al.Groupnet:Multiscale hypergraph neural networks for trajectory prediction with relational reasoning[C]//CVPR.IEEE,2022:6498-6507. [8]LI J,YANG L,CHEN Y,et al.MFAN:Mixing feature attention network for trajectory prediction[J].Pattern Recognition,2024,146:109997. [9]YANG Z Y,YANG J,ZHOU Y,et al.Multimodal trajectory prediction for intelligent connected vehicles in complex road scenarios based on causal reasoning and driving cognition characteristics[J].Scientific Reports,2025,15(1):7259. [10]CHEN W,SANG H,WANG J,et al.WTGCN:wavelet transform graph convolution network for pedestrian trajectory prediction[J].International Journal of Machine Learning and Cybernetics,2024,15(12):5531-5548. [11]WANG H,ZHI W,BATISTA G,et al.Pedestrian trajectoryprediction using goal-driven and dynamics-based deep learning framework[J].Expert Systems with Applications,2025,271:126557. [12]YUAN J,XIA Y.Vehicle Trajectory Prediction Based on Spatial-Temporal Graph Attention Convolutional Network[J].Computer Science,2024,51(12):157-165. [13]NASERNEJAD P,SAYED T,ALSALEH R.Modeling pedestrian behavior in pedestrian-vehicle near misses:A continuous Gaussian Process Inverse Reinforcement Learning(GP-IRL) approach[J].Accident Analysis & Prevention,2021,161:106355. [14]WANG H,ZHI W,BATISTA G,et al.Pedestrian trajectoryprediction using dynamics-based deep learning[C]//2024 IEEE ICRA.IEEE,2024:15068-15075. [15]PEI Z,ZHANG J,ZHANG W,et al.Autofocusing for synthetic aperture imaging based on pedestrian trajectory prediction[J].IEEE TCSVT,2023,34(5):3551-3562. [16]LI X B,CHEN P,SHUAI B,et al.Novel Predictive Approach to Trajectory-aware Online Edge Service Allocation in Edge Environment[J].Computer Science,2022,49(11):277-283. [17]ZHANG Z,GUO D,ZHOU S,et al.Flight trajectory prediction enabled by time-frequency wavelet transform[J].Nature Communications,2023,14(1):5258. [18]PELLEGRINI S,ESS A,SCHINDLER K,et al.You’ll never walk alone:Modeling social behavior for multi-target tracking[C]//ICCV.IEEE,2009:261-268. [19]ROBICQUET A,SADEGHIAN A,ALAHI A,et al.Learningsocial etiquette:Human trajectory understanding in crowded scenes[C]//European Conference on Computer Vision.Cham:Springe,2016:549-565. [20]CAESAR H,BANKITI V,LANG A H,et al.nuscenes:A multimodal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11621-11631. [21]WILSON B,QI W,AGARWAL T,et al.Argoverse 2:Next generation datasets for self-driving perception and forecasting[J].arXiv:2301.00493,2023. [22]LI J,YANG F,TOMIZUKA M,et al.Evolvegraph:Multi-agent trajectory prediction with dynamic relational reasoning[J].Advances in Neural Information Processing Systems,2020,33:19783-19794. |
|