计算机科学 ›› 2012, Vol. 39 ›› Issue (11): 127-130.
任永功 杨荣杰 尹明飞 马名威
摘要: 在类和特征分布不均时,传统信息增益算法的分类性能急剧下降。针对此不足,提出一种基于信息增益的文 本特征选择方法(TDpIU)。首先对数据集按类进行特征选择,以减少数据集不平衡性对特征选取的影响。其次运用 特征出现概率计算信息增益权值,以降低低频词对特征选择的千扰。最后使用离散度分析特征在每类中的信息增益 值,过滤掉高频词中的相对冗余特征,并对选取的特征应用信息增益差值做进一步细化,获取均匀精确的特征子集。 通过对比实验表明,选取的特征具有更好的分类性能。
No related articles found! |
|