计算机科学 ›› 2012, Vol. 39 ›› Issue (11): 174-178.
王丽萍,吴秋花,邱飞岳,吴裕市
摘要: 为弥补粒子群后期收敛缓慢与早熟的不足,提出了一种局部搜索与改进MOPSO的混合优化算法(H-MOP- SO)。该算法首先采用非均匀变异算子和自适应惯性权重,强化全局搜索能力;继而建立混合算法模型,并利用侧步 爬山搜索算法对粒子群作周期性优化,使远离前沿的粒子朝下降方向搜索,而靠近前沿的粒子朝非支配方向搜索,加 快粒子群的收敛并改善解集多样性。对标准测试函数的求解表明,该算法比MOPSO, NSGA-II和MOEA/D具有更 好的多样性和收敛性。供应商优选问题的求解进一步验证了H-MOPSO的有效性。
No related articles found! |
|