计算机科学 ›› 2013, Vol. 40 ›› Issue (12): 248-250.

• 人工智能 • 上一篇    下一篇

细胞钙振荡模型的Hopf分岔与计算机仿真

左宏坤,季全宝,周毅   

  1. 淮南师范学院数学与计算科学系 淮南232038;淮南师范学院数学与计算科学系 淮南232038;淮南师范学院数学与计算科学系 淮南232038
  • 出版日期:2018-11-16 发布日期:2018-11-16
  • 基金资助:
    本文受国家自然科学基金项目(11202083),安徽高校省级自然科学研究基金(KJ2013A240),安徽省高校自然科学基金(KJ2013B260),安徽高校省级自然科学研究项目(KJ2013Z309)资助

Hopf Bifurcation Analysis and Computer Simulation of Cell Calcium Oscillation Model

ZUO Hong-kun,JI Quan-bao and ZHOU Yi   

  • Online:2018-11-16 Published:2018-11-16

摘要: 利用中心流形定理和分岔理论,研究了Borghans-Dupont模型平衡点分岔现象,揭示了钙振荡现象发生机理。通过对系统分岔现象的理论分析,不仅证明了Hopf分岔的存在,而且也说明了振荡现象产生和消失的主要原因来源于两个分别为超临界和亚临界的Hopf分岔。利用计算机仿真,绘制了系统平衡点分岔图、相图与时序图,验证了理论分析的正确性。

关键词: 钙振荡,Hopf分岔,中心流形,平衡点,稳定性,极限环

Abstract: The bifurcation mechanisms of the Borghans-Dupont model of calcium oscillation were investigated.By applying the centre manifold and bifurcation theory,a theoretical analysis of bifurcation in this model was first performed.The results not only exhibite the Hopf bifurcation but also show that the supercritical Hopf bifurcation and the subcritical Hopf bifurcation play a great role in the calcium oscillations.Our computer simulations,including the bifurcation diagram of fixed points,the bifurcation diagram of the system in two dimensional parameter space and time series,have been plotted in order to illustrate the correctness of the theoretical and dynamical analysis.

Key words: Calcium oscillation,Hopf bifurcation,Centre manifold,Equilibrium,Stability,Limit cycle

[1] Kummer U,Olsen L F,Dixon C J,et al.Switching from simple to complex oscillations incalcium signaling[J].Biophys J,2000,79:1188-1195
[2] Woods N M,Kuthbertson K S R,Cobbold P H.Agonist-induced oscillations in hepatocytes[J].Cells Calcium,1987,8:79-100
[3] Goldbeter A.Biochemical oscillations and cellular rhythms[M].Cambridge:Cambridge University Press,1996
[4] Borghans J A M,Dupont G,Goldbeter A.Complex intracellular calcium oscillations.A theoretical exploration of possible mechanisms[J].Biophys Chem,1997,66(1):25-41
[5] Nabajyoti D,Tarini K D.Determination of supercritical and subcritical Hopf bifurcation on a two-dimensional chaotic model [J].Internatioal Journal of Advanced Scientific and Technical Research,2012,1:207-220
[6] Jing X,Yu Z X,Yuan R.Stability and Hopf bifurcation in a symetrric lotka-volterra predator system with delays [J].Electric Journal of Differential Equations,2013:1-16
[7] 严传魁,刘深泉.动态IP3-Ca2+振荡模型的数值分析[J].生物数学学报,2005,21(5):339-344
[8] 周莉莉,李旭东,常玉.Houart-Dupont钙振荡模型的复杂动态[J].北京化工大学学报,2010,37(3):134-139
[9] Wiggin S.Introduction to applied nonlinear dynamical systems and chaos [M].Berlin:Springer,1990
[10] Jing Z J,Chang Y,Guo B L.Bifurcation and chaos in discrete FitzHugh Nagumo systems [J].Chaos Solitions and Fractals,2004,21(3):701-710
[11] 王青云,石霞,陆启韶.神经元耦合系统的同步动力学[M].北京:科学出版社,2008
[12] 李绍文.连续时延神经网络模型的Hopf分岔分析[J].计算机科学,2002,9(9):47-49
[13] Gentile F S,Moiola J L,Paolini E E.On the study of bifurcation in delay-differential equations:A frequency-domain approach [J].Int J Bifurcation Chaos,2012,22(6):125-137

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!