计算机科学 ›› 2017, Vol. 44 ›› Issue (3): 300-306.doi: 10.11896/j.issn.1002-137X.2017.03.061

• 图形图像与模式识别 • 上一篇    下一篇

基于Haar-like特征的实时L1-跟踪算法

阎刚,屈高超,于明   

  1. 河北工业大学电子信息工程学院 天津 300401;河北工业大学计算机科学与软件学院 天津 300401;河北省大数据计算重点实验室 天津 300401,河北工业大学计算机科学与软件学院 天津 300401;河北省大数据计算重点实验室 天津 300401,河北工业大学电子信息工程学院 天津 300401;河北工业大学计算机科学与软件学院 天津 300401;河北省大数据计算重点实验室 天津 300401
  • 出版日期:2018-11-13 发布日期:2018-11-13
  • 基金资助:
    本文受国家自然科学基金资助

Real-time L1-tracker Based on Haar-like Features

YAN Gang, QU Gao-chao and YU Ming   

  • Online:2018-11-13 Published:2018-11-13

摘要: 稀疏表示技术已成功应用于视觉跟踪,但是仍然存在跟踪算法效率低的问题。提出一种基于Haar-like特征的视频跟踪算法,该算法是基于粒子滤波框架的L1-跟踪算法,其特点是运用Haar-like特征及特征块的思想对完备基进行重新构造。将正负小模板由单个像素改为像素块,降低稀疏表示中过完备基的维数,大幅减少稀疏矩阵的计算量;同时,在保证跟踪质量的前提下适当减少目标模板数量,减少稀疏计算的次数,并控制模板更新频率。实验结果表明,所提算法能大幅提高跟踪的实时性,同时很好地解决了跟踪问题中的短时间遮挡、目标物体的形变以及光照变化等问题。

关键词: L1-跟踪算法,粒子滤波,稀疏表示,目标跟踪,Haar-like特征

Abstract: In order to solve the problem of real-time in L1-tracker algorithm under the framework of particle filter,this paper proposed an improved L1-tracker algorithm based on Haar-like features.Firstly,the complete dictionary is reconstructed by the Haar-like features and feature blocks.The single pixels are replaced by the pixel blocks to make up positive and negative trivial templates.Then,the dimensions of over-complete dictionary are reduced by sparse representation and the calculation amount of the sparse matrices is significantly reduced.Secondly,the number of the target template is reduced in order to decrease the calculation of sparse representation.Finally,the updating frequency of the templates is controlled by experiential value.Experimental results demonstrate that the proposed algorithm can significantly improve real-time of L1-tracker algorithm and is effective under short time occlusion,the deformation of target and illumination changes.

Key words: L1-tracker,Particle filter,Sparse representation,Object tracking,Haar-like features

[1] MEI X,LING H B.Robust visual tracking using 1 minimization[C]∥2009 IEEE 12th International Conference on Computer Vision.IEEE,2009:1436-1443.
[2] WRIGHT J,YANG A Y,GANESH A,et al.Robust Face Reco-gnition via Sparse Representation[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2009,31(2):210-227.
[3] ARULAMPALAM M S,MASKELL S,G ORDON N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Transactions on Signal Processing,2002,50(2):174-188.
[4] CANDES E J ,WAKIN M B.An Introduction To Compressive Sampling[J].IEEE Signal Processing Magazine,2008,25(2):21-30.
[5] MIE X,LING H B,WU Y,et al.Minimum error bounded efficient 1 tracker with occlusion detection[C]∥2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2011:1257-1264.
[6] BAO C L,WU Y,LING H B,et al.Real time robust L1 tracker using accelerated proximal gradient approach[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Society,2012:1830-1837.
[7] JIA X,LU H C,YANG M H.Visual tracking via adaptive structural local sparse appearance model[C]∥IEEE Conference on Computer Vision & Pattern Recognition.2012:1822-1829.
[8] ZHONG W,LU H C,YANG M H.Robust object tracking via sparsity-based collaborative model[C]∥IEEE Conference on Computer Vision and Pattern Recognition.IEEE Computer Socie-ty,2012:1838-1845.
[9] WANG D,LU H C,YANG M H.Online object tracking with sparse prototypes[J].IEEE Transactions on Image Processing,2013,22(1):314-25.
[10] WANG Q,CHEN F,XU W L,et al.Online discriminative object tracking with local sparse representation[C]∥IEEE Workshop on the Applications of Computer Vision.IEEE Computer Society,2012:425-432.
[11] BABENKO B,YANG M H,BELONGIE S.Robust ObjectTracking with Online Multiple Instance Learning[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,33(8):1619-1632.
[12] PAPAGEORGIOU C P ,OREN M,POGGIO T.A Generalframework for object detection[C]∥International Conference on Computer Vision.1998:555-562.
[13] WU G X,ZHAO C X,LU W J,et al.Efficient structured 1tracker based on laplacian error distribution[J].International Journal of Machine Learning and Cybernetics August,2015,6(4):581-595.
[14] WANG X Y,WANG Y,WAN W G,et al.Object tracking with sparse representation and annealed particle filter[J].Signal Ima-ge and Video Processing,2014,8(6):1053-1068.
[15] VIOLA P,JONES M.Rapid Object Detection using a Boosted Cascade of Simple Features[C]∥CVPR 2001.2001:1-511-1-518.
[16] ZHOU F,JIANG W,LI S Q,et al.Moving Target Localization and Tracking Algorithms:A Particle Filter Based Method[J].Journal of Software,2014,24(9):2196-2213.(in Chinese) 周帆,江维,李树全,等.基于粒子滤波的移动物体定位和追踪算法[J].软件学报,2013,4(9):2196-2213.
[17] TSENG P.Approximation accuracy,gradient methods,and error bound for structured convex optimization[J].Mathematical Programming,2010,125(2):263-295.
[18] ZHANG K,ZHANG L,YANG M H.Real-Time CompressiveTracking[C]∥European Conference on Computer Vision.Springer-Verlag,2012:864-877.
[19] YILMAZ A,JAVED O,SHAH M.Object tracking:A survey[J].ACM Computing Surveys,2006,38(4):81-93.
[20] MEI X,LING H B,WU Y,et al.Efficient minimum errorbounded particle resampling L1 tracker with occlusion detection[J].IEEE Transactions on Image Processing,2013,22(7):2661-2675.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!