计算机科学 ›› 2019, Vol. 46 ›› Issue (11): 130-136.doi: 10.11896/jsjkx.180901690

• 信息安全 • 上一篇    下一篇

一种基于差分隐私的数据查询分级控制策略

李森有, 季新生, 游伟, 赵星   

  1. (国家数字交换系统工程技术研究中心 郑州450002)
  • 收稿日期:2018-09-10 出版日期:2019-11-15 发布日期:2019-11-14
  • 通讯作者: 季新生(1968-),男,博士,教授,主要研究方向为移动通信安全、网络通信与网络安全,E-mail:jxs@ndsc.com.cn
  • 作者简介:李森有(1993-),男,硕士,主要研究方向为移动通信安全、隐私保护,E-mail:lisenyou1993@163.com;游伟(1984-),男,博士,讲师,主要研究方向为移动通信网络安全、新一代移动通信网络技术;赵星(1991-),男,博士,主要研究方向为移动边缘计算。
  • 基金资助:
    本文受国家自然科学基金项目(61521003,61801515)资助。

Hierarchical Control Strategy for Data Querying Based on Differential Privacy

LI Sen-you, JI Xin-sheng, YOU Wei, ZHAO Xing   

  1. (National Digital Switching System Engineering & Technological R&D Center,Zhengzhou 450002,China)
  • Received:2018-09-10 Online:2019-11-15 Published:2019-11-14

摘要: 在数据的查询、发布和共享过程中,保护用户的隐私数据至关重要。现有的隐私保护模型大多未考虑不同信任等级用户的查询结果不同,而为查询数据集的所有用户提供相同隐私保护级别的数据。这种“一刀切”的方法忽略了不同个体之间数据隐私保护要求的差异性。并且多个查询用户可能具有不同的查询权限和信誉值,所查询的数据隐私属性也不尽相同。因此,这些提供相同级别的隐私保护方法无法满足隐私保护的差异化需求。为此,提出一种基于差分隐私的数据查询分级控制策略。当查询用户提交查询请求时,该隐私保护策略可以根据查询者的权限、信誉值和数据隐私属性计算查询安全信任度并量化分级,对不同信任等级的查询返回结果添加服从不同分布特性的Laplace噪声以保护数据隐私。为保证高可用性的数据不被低等级查询用户获取,引入可用性评估模块,在保护隐私的同时对数据的可用性进行分析。仿真实验结果表明:所提出的查询分级控制模型能够为不同等级的查询用户提供误差率在0.1%~30%范围内的数据信息,解除了差分隐私仅提供相同级别隐私保护的重要限制,有效解决了多信任等级用户查询的隐私泄露问题。并且,对最终查询返回结果进行可用性分析能够在差分隐私保护范围内最大程度地提高数据的可用性。

关键词: 查询控制, 差分隐私, 数据可用性, 信任等级, 信任度, 隐私保护

Abstract: Protecting users’ private data is critical in the process of data querying,publishing and sharing.Most of the existing privacy protection models provide a uniform level of privacy protection for all query users of the dataset without considering the different query results of different trust levels.This “one size fits all” approach ignores the differences of the privacy protection requirements between individuals.Multiple query users may have different query privilege and reputation value,and the data privacy attributes of the queries are also different.Therefore,those methods of providing a uniform level of privacy protection cannot meet the differentiated needs of privacy protection.This paper proposed a hie-rarchical query control strategy based on differential privacy.When the query user submits a query request,this method can protect data privacy by adding Laplace noise with different distribution characteristics into the returned results for different trust levels queries.The trust levels are based on the query security trust degree according to the privilege,repu-tation value of users and data privacy attribute.In order to ensure high availability data cannot be obtained by low-level query users,the availability evaluation module is introduced to analyze the data availability while protecting privacy.The simulation experimental results demonstrate that the proposed control model can provide protected data with error rates ranging from 0.1% to 30% for different levels of query users,releasing the important limitation of differential privacy providing only a uniform level of privacy protection,and solving the privacy leakage problem of data query of multi-trust level users.And analyzing the availability of the query results can maximize data availability within the context of diffe-rential privacy protection.

Key words: Data availability, Differential privacy, Privacy preserving, Query control, Trust degree, Trust level

中图分类号: 

  • TP309.2
[1]LIANG F,YU W,AN D,et al.A Survey on Big Data Market:Pricing,Trading and Protection [J].IEEE Access,2018,6:15132-15154.
[2]VIJI D,SARAVANAN K,HEMAVATHI D.A journey on privacy protection strategies in big data[C]∥International Confe-rence on Intelligent Computing and Control Systems.IEEE,2018.
[3]YU L,WANG H Y.Application of Big Data Technology in Network Security Analysis[J].Modern Information Technology,2018,2(2):158-161.(in Chinese)
刘瑜,王洪艳.大数据技术在网络安全分析中的应用初探[J].现代信息技术,2018,2(2):158-161.
[4]LATANYA S.k-anonymity:a model for protecting privacy [J].International Journal on Uncertainty,Fuzziness and Knowledge based Systems,2002,10(5):557-570.
[5]ASHWIN M,JOHANNES G,DANIEL K.$\ell$-Diversity:Privacy Beyond k-Anonymity[J].International Conference on Data Engineering,2006,1(1):24-35.
[6]LI N H,LI T C,SURESH V.t-Closeness:Privacy Beyond kAnonymity and l-Diversity[C]∥IEEE International Conference on Data Engineering.2007:106-115.
[7]XIONG P,ZHU T Q,WANG X F.A Survey on Differential privacy protection and application [J].Chinese Journal of Compu-ters,2014,37(1):101-122.(in Chinese)
熊平,朱天清,王晓峰.差分隐私保护及其应用[J].计算机学报,2014,37(1):101-122.
[8]DWORK C,ROTH A.The Algorithmic Foundations of Differential Privacy[M].Hanover:Now Publishers Inc.2014.
[9]ZHU T Q,LI G,ZHOU W,et al.Differentially Private Data Publishing and Analysis:A Survey [J].IEEE Transactions on Knowledge & Data Engineering,2017,29(8):1619-1638.
[10]REN J,XIONG J,YAO Z,et al.DPLK-Means:A Novel Differential Privacy K-Means Mechanism[C]∥IEEE Second International Conference on Data Science in Cyberspace.IEEE,2017:133-139.
[11]CHENG X,SU S,XU S,et al.A Two-Phase Algorithm for Differentially Private Frequent Subgraph Mining [J].IEEE Tran-sactions on Knowledge & Data Engineering,2018,30(8):1411-1425.
[12]YIN C,XI J,SUN R,et al.Location Privacy Protection based on Differential Privacy Strategy for Big Data in Industrial Internet-of-Things [J].IEEE Transactions on Industrial Informatics,2018,14(8):3628-3636.
[13]LI Q,LI Y,ZENG G,et al.Differential privacy data publishing method based on cell merging[C]∥IEEE,International Confe-rence on Networking,Sensing and Control.IEEE,2017:778-782.
[14]SORUIA-COMAS J,DOMINGO-FERRER J,SANCHEZ D,etal.Individual Differential Privacy:A Utility-Preserving Formulation of Differential Privacy Guarantees [J].IEEE Transactions on Information Forensics & Security,2017,12(6):1418-1429.
[15]SMITH M,LOPEZ MAA,ZWIESSELE M,et al.Differentially private regression with Gaussian processes[C]∥International Conference on Artificial Intelligence and Statistics.2018.
[16]ZHANG X M,HUANG Z Q,SUN Y.Research on Privacy Access Control Based on RBAC [J].Compute Science,2016,43(1):166-171.(in Chinese)
张学明,黄志球,孙艺.基于RBAC的隐私访问控制研究[J].计算机科学,2016,43(1):166-171.
[17]ZHANG W J,LI H.A differentially-private mechanism formulti-level data publishing [J].Chinese Journal of Network and Information Security,2015:219-223.(in Chinese)
张文静,李晖.差分隐私保护下的数据分级发布机制[J].网络与信息安全学报,2015,1(1):58-65.
[18]JIA Z,WU W,GUO Y,et al.A privacy-preserving multi-levels access control protocol for sensitive data sharing[C]∥International Conference on Communication Technology.IEEE,2016:883-887.
[19]DUBEY J,TOKEKAR V.Bayesian network based trust model with time window for Pure P2P computing systems[C]∥Wireless Computing and NETWORKING.IEEE,2015:219-223.
[20]WIKIPEDIA.Gaussian function [EB/OL].https://en.wikipedia.org/wiki/Gaussian_function.
[21]BONOMI L,XIONG L.A two-phase algorithm for mining sequential patterns with differential privacy[C]∥Proceedings of the 22nd ACM international conference on Information & Knowledge Management.ACM,2013:269-278.
[1] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩.
基于分层抽样优化的面向异构客户端的联邦学习
Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients
计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 吕由, 吴文渊.
隐私保护线性回归方案与应用
Privacy-preserving Linear Regression Scheme and Its Application
计算机科学, 2022, 49(9): 318-325. https://doi.org/10.11896/jsjkx.220300190
[4] 黄觉, 周春来.
基于本地化差分隐私的频率特征提取
Frequency Feature Extraction Based on Localized Differential Privacy
计算机科学, 2022, 49(7): 350-356. https://doi.org/10.11896/jsjkx.210900229
[5] 蔡晓娟, 谭文安.
一种改进的融合相似度和信任度的协同过滤算法
Improved Collaborative Filtering Algorithm Combining Similarity and Trust
计算机科学, 2022, 49(6A): 238-241. https://doi.org/10.11896/jsjkx.210400088
[6] 王健.
基于隐私保护的反向传播神经网络学习算法
Back-propagation Neural Network Learning Algorithm Based on Privacy Preserving
计算机科学, 2022, 49(6A): 575-580. https://doi.org/10.11896/jsjkx.211100155
[7] 李利, 何欣, 韩志杰.
群智感知的隐私保护研究综述
Review of Privacy-preserving Mechanisms in Crowdsensing
计算机科学, 2022, 49(5): 303-310. https://doi.org/10.11896/jsjkx.210400077
[8] 王美珊, 姚兰, 高福祥, 徐军灿.
面向医疗集值数据的差分隐私保护技术研究
Study on Differential Privacy Protection for Medical Set-Valued Data
计算机科学, 2022, 49(4): 362-368. https://doi.org/10.11896/jsjkx.210300032
[9] 吕由, 吴文渊.
基于同态加密的线性系统求解方案
Linear System Solving Scheme Based on Homomorphic Encryption
计算机科学, 2022, 49(3): 338-345. https://doi.org/10.11896/jsjkx.201200124
[10] 孔钰婷, 谭富祥, 赵鑫, 张正航, 白璐, 钱育蓉.
基于差分隐私的K-means算法优化研究综述
Review of K-means Algorithm Optimization Based on Differential Privacy
计算机科学, 2022, 49(2): 162-173. https://doi.org/10.11896/jsjkx.201200008
[11] 金华, 朱靖宇, 王昌达.
视频隐私保护技术综述
Review on Video Privacy Protection
计算机科学, 2022, 49(1): 306-313. https://doi.org/10.11896/jsjkx.201200047
[12] 雷羽潇, 段玉聪.
面向跨模态隐私保护的AI治理法律技术化框架
AI Governance Oriented Legal to Technology Bridging Framework for Cross-modal Privacy Protection
计算机科学, 2021, 48(9): 9-20. https://doi.org/10.11896/jsjkx.201000011
[13] 董晓梅, 王蕊, 邹欣开.
面向推荐应用的差分隐私方案综述
Survey on Privacy Protection Solutions for Recommended Applications
计算机科学, 2021, 48(9): 21-35. https://doi.org/10.11896/jsjkx.201100083
[14] 孙林, 平国楼, 叶晓俊.
基于本地化差分隐私的键值数据关联分析
Correlation Analysis for Key-Value Data with Local Differential Privacy
计算机科学, 2021, 48(8): 278-283. https://doi.org/10.11896/jsjkx.201200122
[15] 张学军, 杨昊英, 李桢, 何福存, 盖继扬, 鲍俊达.
融合语义位置的差分私有位置隐私保护方法
Differentially Private Location Privacy-preserving Scheme withSemantic Location
计算机科学, 2021, 48(8): 300-308. https://doi.org/10.11896/jsjkx.200900198
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!