• 大数据与数据挖掘 •

### 基于智能电表运行故障数据的纵向分析模型

1. 国网天津市电力公司电力科学研究院 天津3000001;
武汉大学国家网络安全学院 武汉4300762
• 出版日期:2019-06-14 发布日期:2019-07-02
• 通讯作者: 刘金硕(1974-),女,博士,副教授,硕士生导师,主要研究方向为数据挖掘、高性能计算,E-mail:896290784@qq.com(通信作者)。
• 作者简介:刘紫熠(1987-),女,工程师,主要研究方向为电能计量;刘 卿(1980-),男,高级工程师,主要研究方向为电能计量;
• 基金资助:
本文受国家电网公司科技项目(用电信息采集系统运行维护及现场移动作业关键技术研究)资助。

### Vertical Analysis Based on Fault Data of Running Smart Meter

LIU Zi-yi1, LIU Qing1, WANG Chong1, WANG Ji-meng1, WANG Yue1, LIU Jin-shuo2, YIN Ze-hao2

1. State Grid Tianjin Electric Power Company Electric Power Research Institute,Tianjin 300000,China1;
School of Cyber Science and Engineering,Wuhan University,Wuhan 430076,China2
• Online:2019-06-14 Published:2019-07-02

Abstract: As the main tool of electricity measurement and economic settlement,the failure rate of smart meter is directly related to the national economy and livelihood of the masses.This paper devised a vertical analysis model of fault data of running smart meter.The model can analyze the operation failure rate data of smart meters from different manufacturers and batches.The model firstly cleans the useless data,then carries out linear regression analysis on the basic data items,and gets the fault data and changing rate of the failure rate of each batch,which are utilized to do the cluster to evaluate the stability of the factory quality.The method and the result of the model can assess the quality of the batch of the smart meter,and can be beneficial to estimate the quality of factory.

• TM934
 [1]董力通,周原冰,李蒙.智能电网对智能电表的要求及产业发展建议.能源技术经济,2010,22(1):15-17. 唐涛涛.电能表的误差发生分析与解决办法.现代测量与实验室管理,2011(3):13-15. O’Connor,Kleyner.Guide for selecting and using reliability predictions based on IEEE 1413..http://www.doc88.com/p-90425856345.html. 王慧芳,杨荷娟,何奔腾,等.输变电设备状态故障率模型改进分析.电力系统自动化.2011,35(16):27-31. 顾伟,褚建新.基于故障统计模型的可修系统维修周期预测法.机械强度,2000,22(1):22-27. GB 17215.911-200×/IEC/TR 62059-11-2002,电量计量设备. 可靠性.第11部分:一般概念..http://www.tsinfo.js.cn/wine/index/gbtdetails.aspx?A100=IEC/TR%2062059-11-2002. GB 17215.911-200×/IEC/TR 62059-31-1-2008,电能测量设备--可靠性--第31-1部分:加速可靠性测试--提高温度和湿度..http://www.tsinfo.js.cn/inquiry/gbtdetails.aspx?A100=IEC%2062059-31-1-2008. 徐瑞.多层线性模型在高一物理学习影响因素分析中的应用.昆明:云南师范大学,2009. 刘红云,孟庆茂.纵向数据分析方法.心理科学进展,2003,11(5):586-592. 孙吉贵,刘杰,赵连宇.聚类算法研究.软件学报,2008,19(1):48-61. 李瑞莹,康锐.基于ARMA模型的故障率预测方法研究.系统工程与电子技术,2008,30(8):1588-1591.
 [1] 柴慧敏, 张勇, 方敏. 基于特征相似度聚类的空中目标分群方法 Aerial Target Grouping Method Based on Feature Similarity Clustering 计算机科学, 2022, 49(9): 70-75. https://doi.org/10.11896/jsjkx.210800203 [2] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩. 基于分层抽样优化的面向异构客户端的联邦学习 Federated Learning Based on Stratified Sampling Optimization for Heterogeneous Clients 计算机科学, 2022, 49(9): 183-193. https://doi.org/10.11896/jsjkx.220500263 [3] 刘丽, 李仁发. 医疗CPS协作网络控制策略优化 Control Strategy Optimization of Medical CPS Cooperative Network 计算机科学, 2022, 49(6A): 39-43. https://doi.org/10.11896/jsjkx.210300230 [4] 鲁晨阳, 邓苏, 马武彬, 吴亚辉, 周浩浩. 基于DBSCAN聚类的集群联邦学习方法 Clustered Federated Learning Methods Based on DBSCAN Clustering 计算机科学, 2022, 49(6A): 232-237. https://doi.org/10.11896/jsjkx.211100059 [5] 郁舒昊, 周辉, 叶春杨, 王太正. SDFA:基于多特征融合的船舶轨迹聚类方法研究 SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion 计算机科学, 2022, 49(6A): 256-260. https://doi.org/10.11896/jsjkx.211100253 [6] 毛森林, 夏镇, 耿新宇, 陈剑辉, 蒋宏霞. 基于密度敏感距离和模糊划分的改进FCM算法 FCM Algorithm Based on Density Sensitive Distance and Fuzzy Partition 计算机科学, 2022, 49(6A): 285-290. https://doi.org/10.11896/jsjkx.210700042 [7] 陈景年. 一种适于多分类问题的支持向量机加速方法 Acceleration of SVM for Multi-class Classification 计算机科学, 2022, 49(6A): 297-300. https://doi.org/10.11896/jsjkx.210400149 [8] 陈佳舟, 赵熠波, 徐阳辉, 马骥, 金灵枫, 秦绪佳. 三维城市场景中的小物体检测 Small Object Detection in 3D Urban Scenes 计算机科学, 2022, 49(6): 238-244. https://doi.org/10.11896/jsjkx.210400174 [9] 邢云冰, 龙广玉, 胡春雨, 忽丽莎. 基于SVM的类别增量人体活动识别方法 Human Activity Recognition Method Based on Class Increment SVM 计算机科学, 2022, 49(5): 78-83. https://doi.org/10.11896/jsjkx.210400024 [10] 朱哲清, 耿海军, 钱宇华. 面向化学结构的线段聚类算法 Line-Segment Clustering Algorithm for Chemical Structure 计算机科学, 2022, 49(5): 113-119. https://doi.org/10.11896/jsjkx.210700131 [11] 张宇姣, 黄锐, 张福泉, 隋栋, 张虎. 基于菌群优化的近邻传播聚类算法研究 Study on Affinity Propagation Clustering Algorithm Based on Bacterial Flora Optimization 计算机科学, 2022, 49(5): 165-169. https://doi.org/10.11896/jsjkx.210800218 [12] 左园林, 龚月姣, 陈伟能. 成本受限条件下的社交网络影响最大化方法 Budget-aware Influence Maximization in Social Networks 计算机科学, 2022, 49(4): 100-109. https://doi.org/10.11896/jsjkx.210300228 [13] 杨旭华, 王磊, 叶蕾, 张端, 周艳波, 龙海霞. 基于节点相似性和网络嵌入的复杂网络社区发现算法 Complex Network Community Detection Algorithm Based on Node Similarity and Network Embedding 计算机科学, 2022, 49(3): 121-128. https://doi.org/10.11896/jsjkx.210200009 [14] 韩洁, 陈俊芬, 李艳, 湛泽聪. 基于自注意力的自监督深度聚类算法 Self-supervised Deep Clustering Algorithm Based on Self-attention 计算机科学, 2022, 49(3): 134-143. https://doi.org/10.11896/jsjkx.210100001 [15] 蒲实, 赵卫东. 一种面向动态科研网络的社区检测算法 Community Detection Algorithm for Dynamic Academic Network 计算机科学, 2022, 49(1): 89-94. https://doi.org/10.11896/jsjkx.210100023
Viewed
Full text

Abstract

Cited

Shared
Discussed