计算机科学 ›› 2021, Vol. 48 ›› Issue (11): 258-267.doi: 10.11896/jsjkx.201000033
刘遵雄, 朱成佳, 黄稷, 蔡体健
LIU Zun-xiong, ZHU Cheng-jia, HUANG Ji, CAI Ti-jian
摘要: 随着卷积神经网络深度的不断增加,深度卷积神经网络的训练会变得更加困难。此外,在图像超分辨率中,低分辨率图像的通道特征和输入通常在不同的通道中被平等对待,这就导致了卷积神经网络的表征能力被弱化。为了解决这些问题,提出了一种多跳连接残差注意网络,该网络利用多跳连接中的残差(Residual in Multi-skip Connection,RIMC),构造了具有多个残差组的深度网络。每个残差组包含了一定数量的短跳连接和多跳连接。在RIMC的基础上,主网络被允许穿过多跳连接来绕过丰富的低频信息,同时高频信息也可以被主网络集中地学习。另外,考虑到通道和空间维度的相互依赖关系,提出了注意机制块(Attention Mechanism Block,AMBlock)来关注信息的位置,并自适应地调整通道特征尺度,其中通道注意机制和空间注意机制被应用在这种方式中。实验结果表明,该网络可以更好地恢复图像细节,获得更高的图像质量和网络性能。
中图分类号:
[1]IRANI M,PELEG S.Improving resolution by image registration[J].GVGIP:Graphical Models and Image Processing,1991,53(3):231-239. [2]BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding[C]//BMVC.2012. [3]DONG C,LOY C C,HE K,et al.Image super-resolution using deep convolutional networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(2):295-307. [4]WANG Y,LI A,WANG S Q.Research on the influence oftraining set automatic target recognition under super-resolution of remote sensing images[J].Journal of Chongqing University of Technology(Natural Science),2021,35(2):136-143. [5]WANG W,HU T,LI X W,et al.Study on Super-resolutionImage Reconstruction of Leukocytes[J].Computer Science,2021,48(4):164-168. [6]ZOU W W W,YUEN P C.Very Low Resolution Face Recognition Problem[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,2012,21(1):327-340. [7] KARRAS T,AILA T,LAINE S,et al. Progressive Growing of GANs for Improved Quality,Stability,and Variation[J].arXiv:1710.10196,2018. [8]CABALLERO J.Cardiac image super-resolution with global correspondence using multi-atlas patchmatch[J].Medical Image Computing and Computer-assisted Intervention,2013,16(Pt3):9-16. [9]TIMOFTE R,DE V,GOOL L V.Anchored Neighborhood Regression for Fast Example-Based Super-Resolution[C]//IEEE International Conference on Computer Vision.IEEE,2014. [10]TIMOFTE R,VINCENT D S,LUC V G.A+:Adjusted Anchored Neighborhood Regression for Fast Super-Resolution[C]//Asian Conference on Computer Vision.Cham:Springer,2014. [11]PELEG T,ELAD M.A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution[J].IEEE Transactions on Image Processing,2014,23(6):2569-2582. [12]LAI W S,HUANG J B,AHUJA N,et al.Fast and AccurateImage Super-Resolution with Deep Laplacian Pyramid Networks[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence.2017. [13]HUANG J B,SINGH A,AHUJA N.Single Image Super-resolution from Transformed Self-Exemplars[C]//IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2015. [14]LEE C Y,XIE S,GALLAGHER P,et al.Deeply-supervised nets[C]//Artificial Intelligence and Statistics.2015:562-570. [15]LI K,WU Z,PENG K C,et al.Tell me where to look:Guided attention inference network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:9215-9223. [16]ZHANG K,GAO X,TAO D,et al.Single image super-resolution with non-local means and steering kernel regression[J].IEEE Transactions on Image Processing,2012,21(11):4544-4556. [17]ZHANG L,WU X.An edge-guided image interpolation algo-rithm via directional filtering and data fusion[J].IEEE transactions on Image Processing,2006,15(8):2226-2238. [18]CHAO D,CHEN C L,HE K,et al.Learning a Deep Convolutional Network for Image Super-Resolution[C]//ECCV.Sprin-ger International Publishing.2014. [19]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [20]LIM B,SON S,KIM H,et al.Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2017:136-144. [21]TONG T,LI G,LIU X,et al.Image super-resolution usingdense skip connections[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:4799-4807. [22]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [23]WANG F,JIANG M,QIAN C,et al.Residual attention network for image classification[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2017:3156-3164. [24]KIM J,KWON L J,MU L K.Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1646-1654. [25]KIM J,KWON L J,MU L K.Deeply-recursive convolutionalnetwork for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1637-1645. [26]DONG C,LOY C C,TANG X.Accelerating the super-resolution convolutional neural network[C]//European Conference on Computer Vision.Cham:Springer,2016:391-407. [27]NAIR V,HINTON G E.Rectified linear units improve restric-ted boltzmann machines[C]//ICML.2010. [28]SHI W,CABALLERO J,HUSZÁR F,et al.Real-time singleimage and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:1874-1883. [29]YANG C Y,YANG M H.Fast direct super-resolution by simple functions[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2013:561-568. [30]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [31]LIM B,SON S,KIM H,et al.Enhanced Deep Residual Networks for Single Image Super-Resolution[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).IEEE,2017. [32]CHATTERJEE S,CHU W T.Thermal Face Recognition Based on Transformation by Residual U-Net and Pixel Shuffle Upsampling[M]//Multimedia Modeling,2020:679-689. [33]TIMOFTE R,AGUSTSSON E,VAN G L,et al.Ntire 2017challenge on single image super-resolution:Methods and results[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2017:114-125. [34]BEVILACQUA M,ROUMY A,GUILLEMOT C,et al.Low-Complexity Single Image Super-Resolution Based on Nonnegative Neighbor Embedding[C]//BMVC.2012. [35]ZEYDE R,ELAD M,PROTTER M.On single image scale-up using sparse-representations[C]//International Conference on Curves and Surfaces.Berlin:Springer,2010:711-730. [36]MARTIN D,FOWLKES C,TAL D,et al.A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings Eighth IEEE International Conference on Computer Vision.2001:416-423. [37]HUANG J B,SINGH A,AHUJA N.Single image super-resolution from transformed self-exemplars[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:5197-5206. [38]MATSUI Y,ITO K,ARAMAKI Y,et al.Sketch-based mangaretrieval using manga109 dataset[J].Multimedia Tools and Applications,2017,76(20):21811-21838. [39]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014. [40]WANG Z,LIU D,YANG J,et al.Deep networks for image super-resolution with sparse prior[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:370-378. [41]TAI Y,YANG J,LIU X.Image super-resolution via deep recursive residual network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:3147-3155. [42]ZHANG K,ZUO W,ZHANG L.Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3262-3271. [43]HARIS M,SHAKHNAROVICH G,UKITA N.Deep back-projection networks for super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:1664-1673. [44]TAI Y,YANG J,LIU X,et al.Memnet:A persistent memory network for image restoration[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:4539-4547. [45]LAI W S,HUANG J B,AHUJA N,et al.Fast and accurateimage super-resolution with deep laplacian pyramid networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(11):2599-2613. [46]LAI W S,HUANG J B,AHUJA N,et al.Deep laplacian pyramid networks for fast and accurate super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:624-632. [47]LIU D,WEN B,FAN Y,et al.Non-local recurrent network for image restoration[C]//Advances in Neural Information Processing Systems.2018:1673-1682. [48]ZHANG Y,TIAN Y,KONG Y,et al.Residual dense network for image super-resolution[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2472-2481. |
[1] | 王馨彤, 王璇, 孙知信. 基于多尺度记忆残差网络的网络流量异常检测模型 Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network 计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011 |
[2] | 高荣华, 白强, 王荣, 吴华瑞, 孙想. 改进注意力机制的多叉树网络多作物早期病害识别方法 Multi-tree Network Multi-crop Early Disease Recognition Method Based on Improved Attention Mechanism 计算机科学, 2022, 49(6A): 363-369. https://doi.org/10.11896/jsjkx.210500044 |
[3] | 赵人行, 徐频捷, 刘瑶. 基于深度卷积残差网络的心电单导联房颤检测方法 ECG-based Atrial Fibrillation Detection Based on Deep Convolutional Residual Neural Network 计算机科学, 2022, 49(5): 186-193. https://doi.org/10.11896/jsjkx.220200002 |
[4] | 韩红旗, 冉亚鑫, 张运良, 桂婕, 高雄, 易梦琳. 基于共同子空间分类学习的跨媒体检索研究 Study on Cross-media Information Retrieval Based on Common Subspace Classification Learning 计算机科学, 2022, 49(5): 33-42. https://doi.org/10.11896/jsjkx.210200157 |
[5] | 高心悦, 田汉民. 基于改进U-Net网络的液滴分割方法 Droplet Segmentation Method Based on Improved U-Net Network 计算机科学, 2022, 49(4): 227-232. https://doi.org/10.11896/jsjkx.210300193 |
[6] | 张红民, 李萍萍, 房晓冰, 刘宏. 改进YOLOv3网络模型的人体异常行为检测方法 Human Abnormal Behavior Detection Method Based on Improved YOLOv3 Network Model 计算机科学, 2022, 49(4): 233-238. https://doi.org/10.11896/jsjkx.210300251 |
[7] | 瞿中, 陈雯. 基于空洞卷积和多特征融合的混凝土路面裂缝检测 Concrete Pavement Crack Detection Based on Dilated Convolution and Multi-features Fusion 计算机科学, 2022, 49(3): 192-196. https://doi.org/10.11896/jsjkx.210100164 |
[8] | 郭琳, 李晨, 陈晨, 赵睿, 范仕霖, 徐星雨. 基于通道注意递归残差网络的图像超分辨率重建 Image Super-resolution Reconstruction Using Recursive ResidualNetwork Based on ChannelAttention 计算机科学, 2021, 48(8): 139-144. https://doi.org/10.11896/jsjkx.200500150 |
[9] | 许华杰, 张晨强, 苏国韶. 基于深层卷积残差网络的航拍图建筑物精确分割方法 Accurate Segmentation Method of Aerial Photography Buildings Based on Deep Convolutional Residual Network 计算机科学, 2021, 48(8): 169-174. https://doi.org/10.11896/jsjkx.200500096 |
[10] | 暴雨轩, 芦天亮, 杜彦辉, 石达. 基于i_ResNet34模型和数据增强的深度伪造视频检测方法 Deepfake Videos Detection Method Based on i_ResNet34 Model and Data Augmentation 计算机科学, 2021, 48(7): 77-85. https://doi.org/10.11896/jsjkx.210300258 |
[11] | 王建明, 黎向锋, 叶磊, 左敦稳, 张丽萍. 基于信道注意结构的生成对抗网络医学图像去模糊 Medical Image Deblur Using Generative Adversarial Networks with Channel Attention 计算机科学, 2021, 48(6A): 101-106. https://doi.org/10.11896/jsjkx.200600144 |
[12] | 牛康力, 谌雨章, 张龚平, 谭前程, 王绎冲, 罗美琪. 基于深度学习的无人机航拍车流量监测 Vehicle Flow Measuring of UVA Based on Deep Learning 计算机科学, 2021, 48(6A): 275-280. https://doi.org/10.11896/jsjkx.200900149 |
[13] | 龚航, 刘培顺. 夜间行驶车辆远光灯检测方法 Detection Method of High Beam in Night Driving Vehicle 计算机科学, 2021, 48(12): 256-263. https://doi.org/10.11896/jsjkx.200700026 |
[14] | 柴冰, 李冬冬, 王喆, 高大启. 融合频率和通道卷积注意的脑电(EEG)情感识别 EEG Emotion Recognition Based on Frequency and Channel Convolutional Attention 计算机科学, 2021, 48(12): 312-318. https://doi.org/10.11896/jsjkx.201000141 |
[15] | 杨月麟, 毕宗泽. 基于深度学习的网络流量异常检测 Network Anomaly Detection Based on Deep Learning 计算机科学, 2021, 48(11A): 540-546. https://doi.org/10.11896/jsjkx.201200077 |
|