计算机科学 ›› 2021, Vol. 48 ›› Issue (8): 139-144.doi: 10.11896/jsjkx.200500150

• 计算机图形学& 多媒体 • 上一篇    下一篇

基于通道注意递归残差网络的图像超分辨率重建

郭琳1,2,3, 李晨1, 陈晨1, 赵睿1, 范仕霖1, 徐星雨1   

  1. 1 湖北大学计算机与信息工程学院 武汉430062
    2 智慧政务与人工智能应用湖北省工程研究中心 武汉430062
    3 湖北省教育信息化工程技术研究中心 武汉430062
  • 收稿日期:2020-05-28 修回日期:2020-09-17 发布日期:2021-08-10
  • 通讯作者: 郭琳(guolin@hubu.edu.cn)
  • 基金资助:
    国家自然科学基金(61806076);湖北省自然科学基金项目(2018CFB158)

Image Super-resolution Reconstruction Using Recursive ResidualNetwork Based on ChannelAttention

GUO Lin1,2,3, LI Chen1, CHEN Chen1, ZHAO Rui1, FAN Shi-lin1, XU Xing-yu1   

  1. 1 School of Computer Science and Information Engineering,Hubei University,Wuhan 430062,China;
    2 Hubei Provincial Engineering Research Center for Smart Government Affairs and Artificial Intelligence Application,Wuhan 430062,China;
    3 Research Center of Educational Informatization Engineering and Technology,Hubei Province,Wuhan 430062,China
  • Received:2020-05-28 Revised:2020-09-17 Published:2021-08-10
  • About author:GUO Lin,born in 1978,Ph.D,associate professor.Her main research interests include signal processing,machine vision and deep learning.
  • Supported by:
    National Natural Science Foundation of China(61806076) and Hubei Provincial Natural Science Foundation of China(2018CFB158).

摘要: 近年来,深度学习被广泛应用于图像超分辨率重建。针对基于深度学习的超分辨率重建方法存在的特征提取不充分、细节丢失和梯度消失等问题,提出一种基于通道注意的递归残差深度神经网络模型,用于单幅图像的超分辨率重建。该模型采用残差嵌套网络和跳跃连接构成一种简洁的递归残差网络结构,能够加快深层网络的收敛,同时避免网络退化和梯度问题。在特征提取部分,引入注意力机制来提升网络的判别性学习能力,以提取到更准确、有效的深层残差特征;随后结合并行映射重建网络,最终实现超分辨率重建。在数据集Set5,Set14,B100和Urban100上进行放大2倍、3倍和4倍的重建测试实验,并从客观指标和主观视觉效果上将所提方法与主流方法进行比较。实验结果显示,所提方法在全部4个测试数据集上的客观指标较对比方法均有明显提升,其中,相比插值法和SRCNN 算法,在放大2倍、3倍、4倍时所提方法的平均PSNR值分别提升了3.965dB和1.56dB、3.19dB和1.42dB、2.79dB和1.32dB。视觉效果对比也表明所提方法能更好地恢复图像细节。

关键词: 残差网络, 超分辨率, 深度学习, 跳跃连接, 通道注意

Abstract: In recent years,deep learning has been widely used in image super-resolution reconstruction.To solve the problems of inadequate feature extraction,loss of details and gradient disappearance in super-resolution reconstruction methods based on deep learning,a deep recursive residual neural network model based on channel attention is proposed for single image super-resolution reconstruction.The proposed model constructs a simple recursive residual network structure by residual nested networks and jump connections to deepen the network and speed up its convergence while avoiding network degradation and gradient problems.An attention mechanism is introduced into the feature extraction part to improve the discriminant learning ability of the network for more accurate and more effective extraction of deep residual features,which is combined with the subsequent reconstruction network with parallel mapping structure to ensure the final accurate reconstruction.Quantitative and qualitative assessments are performed on benchmark dataset Set5,Set14,B100 and Urban100 at the magnification of 2,3 and 4 times by comparison with the mainstream methods.Experimental results show that the objective index values of the proposed method increase significantly compared to the comparative methods on all four test data sets.Among them,compared with the interpolation method and the SRCNN algorithm,the average PSNR improves 3.965dB and 1.56dB,3.19dB and 1.42dB,2.79dB and 1.32dB,respectively,at the magnification of 2,3 and 4 times.Visual effects show that the proposed method can recover image details better.

Key words: Channel attention, Deep learning, Residual network, Skip connections, Super-resolution

中图分类号: 

  • TP391
[1]ZHANG H,ZHANG L,SHEN H.A blind super-resolution reconstruction method considering image registration errors [J].International Journal of Fuzzy Systems,2015,17(2):353-364.
[2]ZHANG K B,GAO X B,TAO D A,et al.Single image super-resolution with non-local means and steering kernel regression[J].IEEE Transactions on Image Processing,2012,21( 11):4544-4556.
[3]TIMOFTE R,DE V,GOOL L V.Anchored neighborhood regression for fast example-based super-resolution[C]//Procee-dings of 2013 IEEE International Conference on Computer Vision.Sydney,NSW,Australia:IEEE,2013:1920-1927.
[4]TIMOFTE R,DESMET V,VANGOOL L.A+:adjusted an-chored neighborhood regression for fast super-resolution[C]//Proceedings of 12th Asian Conference on Computer Vision.Singapore:Springer,2014:111-126.
[5]PELEG T,ELAD M.A statistical prediction model based onsparse representations for single image super-resolution [J].IEEE Transactions on Image Processing,2014,23(6):2569-2582.
[6]QIN X J,SHAN Y Y,XIAO J J,et al.Self-learning single image super-resolution reconstruction based on compressive sensing and SVR[J].Computer Science,2017,44(S2):169-174.
[7]LI J H,WU Y R,LV J J.Onlinesingle image super-resolution algorithm based on group sparse representation[J].Computer Science,2018,45(4):312-318.
[8]THAPA D,RAAHEMIFAR K,BOBIER W R,et al.A perfor-mance comparison among different super-resolution techniques [J].Computers & Electrical Engineering,2016,54:313-329.
[9]DONG C,LOY C C,HE K M,et al.Image super-resolutionusing deep convolutional networks[J].IEEE Transaction on Pattern Analysis & Machine Intelligence,2016,38(2):295-307.
[10]DONG C,CHEN C L,TANG X.Accelerating the Super-Reso-lution Convolutional Neural Network[C]//European Conference on Computer Vision.Springer,Cham,2016:391-407.
[11]KIM J,JUNG K L,KYOUNG M L.Accurate Image Super-Re-solution Using Very Deep Convolutional Networks[J].IEEE Conference on Computer Vision and Pattern Recognition.2016:1646-1654.
[12]KIM J,JUNG K L,KYOUNG M L.Deeply-recursive convolutional network for image super-resolution[C]//IEEE Confe-rence on Computer Vision and Pattern Recognition.2016:1637-1645.
[13]LAI W S,HUANG J B,NARENDRA A,et al.Deep laplacian pyramid networks for fast and accurate super-resolution[C]//IEEE Conference on Computer Vision and Pattern Recognition.2017:624-632.
[14]QU Y,LIN L,SHEN F,et al.Joint Hierarchical Category Structure Learning and Large-Scale Image Classification[J]IEEE Transactions on Image Processing,2017,26(9):4331-4346.
[15]HE K,ZHANG X,REN S,et al.Deep Residual Learning for Ima-ge Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[16]SHI W Z,CABALLERO J,HUSZAR F,et al.Real-time single image and video super-resolution using an effcient sub-pixel convolutional neural network[C]//IEEE Conference on Computer Vision and Pattern Recognition.2016:1874-1883.
[17]TAI Y,YANG J,LIU X M.Image super-resolution via deep recursive residual network [C]//IEEE Conference on Computer Vision and Pattern Recognition.2017:3147-3155.
[18]TAI Y,YANG J,LIU X M.Memnet:A persistent memory network for image restoration[C]//IEEE International Conference on Computer Vision.2017:4539-4547.
[19]HU J,LI S,ALBANIE S,et al.Squeeze-and-Excitation Net-works[C]//IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[20]HE K,ZHANG X,REN S,et al.Delving deep into rectifiers:Surpassing human-level performance on imagenet classification [C]//Proceedings of the IEEE International Conference on Computer Vision Santiago.Chile,2015:1026-1034.
[21]QIN Z S,ZHU L L,ZANG H J.An image super-resolution reconstruction method based on convolutional neural network:China Patent,201910149271.6[P].2019-06-18[2020-09-17].
[1] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[2] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[3] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 王馨彤, 王璇, 孙知信.
基于多尺度记忆残差网络的网络流量异常检测模型
Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network
计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011
[6] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[7] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[8] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[9] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[10] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[11] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[12] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[13] 戴朝霞, 李锦欣, 张向东, 徐旭, 梅林, 张亮.
基于DNGAN的磁共振图像超分辨率重建算法
Super-resolution Reconstruction of MRI Based on DNGAN
计算机科学, 2022, 49(7): 113-119. https://doi.org/10.11896/jsjkx.210600105
[14] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[15] 周志豪, 陈磊, 伍翔, 丘东亮, 梁广升, 曾凡巧.
基于SMOTE-SDSAE-SVM的车载CAN总线入侵检测算法
SMOTE-SDSAE-SVM Based Vehicle CAN Bus Intrusion Detection Algorithm
计算机科学, 2022, 49(6A): 562-570. https://doi.org/10.11896/jsjkx.210700106
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!