计算机科学 ›› 2021, Vol. 48 ›› Issue (6A): 374-382.doi: 10.11896/jsjkx.200900027

• 网络&通信 • 上一篇    下一篇

边缘计算中基于能耗感知的容错协同任务执行算法

薛艳芬1, 高继梅1, 范贵生2, 虞慧群2, 许亚杰1   

  1. 1 黄河交通学院智能工程学院 河南 焦作454950
    2 华东理工大学信息科学与工程学院 上海200000
  • 出版日期:2021-06-10 发布日期:2021-06-17
  • 通讯作者: 范贵生(gsfan@ecust.edu.cn)
  • 作者简介:963486235@qq.com
  • 基金资助:
    国家自然科学基金(61702334,61772200);上海自然科学基金(17ZR1406900,17ZR1429700);上海市科技项目创新行动计划(16511101000);上海应用技术大学协同创新基金(XTCX2016-20); 华东理工大学教育教学规律与方法研究项目(ZH1726108)

Energy-aware Fault-tolerant Collaborative Task Execution Algorithm in Edge Computing

XUE Yan-fen1, GAO Ji-mei1, FAN Gui-sheng2, YU Hui-qun2, XU Ya-jie1   

  1. 1 Department of Intelligent Engineering,Huanghe Jiaotong University,Jiaozuo,Henan 454950,China
    2 School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200000,China
  • Online:2021-06-10 Published:2021-06-17
  • About author:XUE Yan-fen,born in 1994,MA.Eng.Her main research interests include mobile cloud computing,service oriented computing,fog/edge computing and formal methods.
    FAN Gui-sheng,born in 1980,Ph.D,associate professor,is a member of China Computer Federation.His research interests include formal methods for complex software system,service oriented computing,and techniques for analysis of software architecture.
  • Supported by:
    National Natural Science Foundation of China(61702334,61772200),Shanghai Municipal Natural Science Foundation(17ZR1406900,17ZR1429700),Action Plan for Innovation on Science and Technology Projects of Shanghai(16511101000),Collaborative Innovation Foundation of Shanghai Institute of Technology(XTCX2016-20) and Educational Research Fund of ECUST(ZH1726108).

摘要: 边缘计算已被设想成为增强资源贫乏的智能设备计算能力的有效解决方案。通过任务卸载用户可以将计算复杂的任务卸载到边缘云端执行来满足其对资源的需求。然而,其仍然需要解决能量消耗、可靠性和延时的问题。文中提出了一种基于能耗感知的容错协同任务执行算法,以在减少设备能耗的同时保证卸载到边缘云上的任务成功执行。具体地,首先设计了一种具有容错能力的能耗感知协同任务执行模型,该模型通过将计算卸载模型和容错模型相结合,从而在应用程序的截止完成时间内减少设备能耗。然后,提出了一种基于能耗感知的容错协同任务执行调度算法,该算法包括协同任务执行、初始化调度和在线调度。协同任务执行是通过部分关键路径分析和one-climb策略来确定任务的执行决策;初始化调度是从副本和重新提交中为在边缘端执行的任务选择容错策略,以在发生故障时可针对任务采取相应容错措施;在线调度是在发生故障时实时调整容错策略以确保任务成功处理。最后,在3种具有代表性的任务拓扑上进行了广泛的仿真实验,评估了3种不同方案在任务完成率、能耗比方面的性能差异。结果表明,无论是截止完成时间、传输速率还是容错率的变化,该方法都可以保证任务在截止时间内顺利完成,相比协同任务执行更可靠,而且相比本地执行设备消耗的能量可至少减少30%。

关键词: 边缘计算, 副本, 计算卸载, 容错, 重新提交

Abstract: Edge computing has been envisioned as an effective solution to enhance the computing capabilities for resource-constrained mobile devices.It allows users to satisfy the resource requirement by offloading heavy computing tasks to the edge cloud.However,it still needs to commit to solving the issues of energy consumption and reliability.This paper firstly proposes an energy-aware collaborative task execution scheduling model,which combines computing offloading model and fault-tolerant model to reduce energy consumption while improving reliability of edge computing within time constraints of tasks.Then,an energy-aware fault-tolerant collaborative task execution scheduling algorithm including collaborative task execution,initial scheduling and online scheduling is proposed to improve reliability while reducing energy consumption.The collaborative task execution is to determine the execution decision of tasks by partial critical path analysis and one-climb policy.The initial scheduling is to determine the fault-tolerant strategy from replication and resubmission for tasks executed on the edge cloud,ensuring the tasks processing successfully.The online scheduling is to adjust the fault-tolerant strategy in real time when a fault occurs.Finally,through extensive simulation experiments with the three different representative task topologies,the performance difference under three different scenarios in terms of the task completion rate and the energy consumption ratio are evaluated.Results show that the proposed method is more reliable than collaborative task execution and more energy-aware than local execution in terms of the change of the deadline,the data transmission rate,and the fault tolerance rate.

Key words: Computing offloading, Edge computing, Fault-tolerant, Replication, Resubmission

中图分类号: 

  • TP391
[1] Cicso.Cisco Visual Networking Index:Global Mobile Data Traffic Forecast Update.2016-2021[EB/OL].https://www.cisco.com.
[2] SHI W,CAO J,ZHANG Q,et al.Edge Computing:Vision and Challenges[J].IEEE Internet of Things Journal,2016,3(5):637-646.
[3] LI C,XUE Y S,WANG J,et al.Edge-Oriented Computing Paradigms:A Survey on Architecture Design and System Management[J].ACM Comput.Surv,2018,51(2):1-39.
[4] MACH P,BECVAR Z.Mobile Edge Computing:A Survey onArchitecture and Computation Offloading[J].IEEE Communications Surveys & Tutorials,2017,19(3):1628-1656.
[5] ZHAO Z M,LIU F,CAI Z P,et al.Edge Computing:Platforms,Applications and Challenges[J].Computer Research and Development,2018,55(2):327-337.
[6] NAHA R K.Fog Computing:Survey of Trends,Architectures,Requirements,and Research Directions[J].IEEE Access,2018(6):47980-48009.
[7] AKHERFI K,GERNDT M,HARROUD H.Mobile Cloud Computing for Computation Offloading:Issues and Challenges[J].Applied Computing and Informatics,2018(14):1-16.
[8] ABD S K,AL-HADDAD S A R,HASHIM F,et al.Energy-Aware Fault Tolerant Task offloading of Mobile Cloud Computing[C]//2017 5th IEEE International Conference on Mobile Cloud Computing,Services,and Engineering.2017:161-164.
[9] DHARMA A,GUPTA B B,YAMAGUCHI S,et al.Recent Advances in Mobile Cloud Computing[J].Wireless Communications and Mobile Computing,2017:1-1.
[10] CHANG W,HU Y H,SHOU G C,et al.An Offloading Scheme Leveraging on Neighboring Node Resources for Edge Computing over Fiber-Wireless (FiWi) Access Networks[J].China Communications,2019,16(11):107-119.
[11] NAHA R K.Fog Computing:Survey of Trends,Architectures,Requirements,and Research Directions[J].IEEE Access,2018,6:47980-48009.
[12] ZHANG W,WEN Y,WU D O.Energy-efficient Scheduling Po-licy for Collaborative Execution in Mobile Cloud Computing[C]//2013 Proceedings IEEE INFOCOM.2013:190-194.
[13] ZHANG W,WEN Y,WU D O.Collaborative Task Execution in Mobile Cloud Computing Under a Stochastic Wireless Channel[J].IEEE Transactions on Wireless Communications,2015,14(1):81-93.
[14] ZHANG W W,WEN Y G.Cloud-assisted collaborative execu-tion for mobile applications with general task topology[C]//2015 IEEE International Conference on Communications (ICC).2015.
[15] YIN S Y,BAO J S,LI J,et al.Real-time task processing method based on edge computing for spinning CPS[J].Frontiers of Mechanical Engineering,2019,14(3):320-331.
[16] ZHANG W,WEN Y.Energy-Efficient Task Execution for Application as a General Topology in Mobile Cloud Computing[J].IEEE Transactions on Cloud Computing,2018,6(3):708-719.
[17] CHEN X,LI W,LU S,et al.Efficient Resource Allocation forOn-Demand Mobile-Edge Cloud Computing[J].IEEE Transactions on Vehicular Technology,2018,67(9):8769-8780.
[18] GUO S,LIU J,YANG Y,et al.Energy-Efficient Dynamic Computation Offloading and Cooperative Task Scheduling in Mobile Cloud Computing[J].IEEE Transactions on Mobile Computing,2019,18(2):319-333.
[19] ZHENG J,CAI Y,et al.Dynamic Computation Offloading for Mobile Cloud Computing:A Stochastic Game-Theoretic Approach[J].IEEE Transactions on Mobile Computing,2019,18(4):771-786.
[20] CHEN X,JIAO L,LI W,et al.Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing[J].IEEE/ACM Transactions on Networking,2016,24(5):2795-2808.
[21] ZHOU A.Cloud Service Reliability Enhancement via VirtualMachine Placement Optimization[J].IEEE Transactions on Services Computing,2017,10(6):902-913.
[22] BAI Y,ZHANG H,FU Y.Reliability Modeling and Analysis of Cloud Service based on Complex Network[C]//2016 Prognostics and System Health Management Conference (PHM-Chengdu).2016:1-5
[23] REDDY C M,NALINI N.Fault Tolerant Cloud Software Systems Using Software Configurations[C]//2016 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM).2016:61-65.
[24] YAO G,DING Y,HAO K.Using Imbalance Characteristic for Fault-Tolerant Workflow Scheduling in Cloud Systems[J].IEEE Transactions on Parallel and Distributed Systems,2017,28(12):3671-3683.
[1] 孙慧婷, 范艳芳, 马孟晓, 陈若愚, 蔡英.
VEC中基于动态定价的车辆协同计算卸载方案
Dynamic Pricing-based Vehicle Collaborative Computation Offloading Scheme in VEC
计算机科学, 2022, 49(9): 242-248. https://doi.org/10.11896/jsjkx.210700166
[2] 于滨, 李学华, 潘春雨, 李娜.
基于深度强化学习的边云协同资源分配算法
Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning
计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219
[3] 张翀宇, 陈彦明, 李炜.
边缘计算中面向数据流的实时任务调度算法
Task Offloading Online Algorithm for Data Stream Edge Computing
计算机科学, 2022, 49(7): 263-270. https://doi.org/10.11896/jsjkx.210300195
[4] 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳.
基于深度确定性策略梯度的服务器可靠性任务卸载策略
Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient
计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040
[5] 陈彦冰, 钟超然, 周超然, 薛凌妍, 黄海平.
基于医疗联盟链的跨域认证方案设计
Design of Cross-domain Authentication Scheme Based on Medical Consortium Chain
计算机科学, 2022, 49(6A): 537-543. https://doi.org/10.11896/jsjkx.220200139
[6] 方韬, 杨旸, 陈佳馨.
D2D辅助移动边缘计算下的卸载策略优化
Optimization of Offloading Decisions in D2D-assisted MEC Networks
计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114
[7] 刘漳辉, 郑鸿强, 张建山, 陈哲毅.
多无人机使能移动边缘计算系统中的计算卸载与部署优化
Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems
计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165
[8] 李博, 向海昀, 张宇翔, 廖浩德.
面向食品溯源场景的PBFT优化算法应用研究
Application Research of PBFT Optimization Algorithm for Food Traceability Scenarios
计算机科学, 2022, 49(6A): 723-728. https://doi.org/10.11896/jsjkx.210800018
[9] 袁昊男, 王瑞锦, 郑博文, 吴邦彦.
基于Fabric的电子病历跨链可信共享系统设计与实现
Design and Implementation of Cross-chain Trusted EMR Sharing System Based on Fabric
计算机科学, 2022, 49(6A): 490-495. https://doi.org/10.11896/jsjkx.210500063
[10] 谢万城, 李斌, 代玥玥.
空中智能反射面辅助边缘计算中基于PPO的任务卸载方案
PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing
计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249
[11] 周天清, 岳亚莉.
超密集物联网络中多任务多步计算卸载算法研究
Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks
计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147
[12] 彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰.
视频缓存策略中QoE和能量效率的公平联合优化
Fair Joint Optimization of QoE and Energy Efficiency in Caching Strategy for Videos
计算机科学, 2022, 49(4): 312-320. https://doi.org/10.11896/jsjkx.210800027
[13] 冯了了, 丁滟, 刘坤林, 马科林, 常俊胜.
区块链BFT共识算法研究进展
Research Advance on BFT Consensus Algorithms
计算机科学, 2022, 49(4): 329-339. https://doi.org/10.11896/jsjkx.210700011
[14] 张海波, 张益峰, 刘开健.
基于NOMA-MEC的车联网任务卸载、迁移与缓存策略
Task Offloading,Migration and Caching Strategy in Internet of Vehicles Based on NOMA-MEC
计算机科学, 2022, 49(2): 304-311. https://doi.org/10.11896/jsjkx.210100157
[15] 林潮伟, 林兵, 陈星.
边缘环境下基于模糊理论的科学工作流调度研究
Study on Scientific Workflow Scheduling Based on Fuzzy Theory Under Edge Environment
计算机科学, 2022, 49(2): 312-320. https://doi.org/10.11896/jsjkx.201000102
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!