计算机科学 ›› 2022, Vol. 49 ›› Issue (2): 304-311.doi: 10.11896/jsjkx.210100157
张海波, 张益峰, 刘开健
ZHANG Hai-bo, ZHANG Yi-feng, LIU Kai-jian
摘要: 在移动边缘计算(MEC)与非正交多路接入(NOMA)技术相结合的车联网系统中,针对用户处理计算密集型和时延敏感型任务时面临的高时延问题,提出了一种基于博弈论和Q学习的任务卸载、迁移与缓存优化策略。首先,对基于NOMA-MEC的车联网任务卸载时延、迁移时延与缓存时延进行建模;其次,采用合作博弈算法获得最优用户分组,以实现卸载时延优化;最后,为避免出现局部最优,通过Q学习算法优化用户分组中的迁移缓存联合时延。仿真结果表明,所提方案相比对比方案,能有效提升卸载效率并降低约22%~43%的任务时延。
中图分类号:
[1]KARAGIANNIS G,ALTINTAS O,EKICI E,et al.Vehicular networking:A survey and tutorial on requirements,architectures,challenges,standards and solutions[J].IEEE Communications Surveys & Tutorials,2011,13(4):584-616. [2]YANG H,ZHENG K,ZHANG K,et al.Ultra-Reliable andLow-Latency Communications for Connected Vehicles:Challenges and Solutions[J].IEEE Network,2020,34(3):92-100. [3]FAN Y F,YUAN S,CAI Y,et al.Deep Reinforcement Lear-ning-based Collaborative Computation Offloading Scheme in VehicularEdge Computing[J].Computer Science,2021,48(5):270-276. [4]SONI T,ALI A R,GANESAN K,et al.Adaptive numerology Asolution to address the demanding QoS in 5G-V2X[C]//Proc.IEEE Wireless Communications and Networking Conference(WCNC).Barcelona,Spain:IEEE Press,2018:1-6. [5]SAITO Y,KISHIYAMA Y,BENJEBBOUR A,et al.Non-or-thogonal multiple access (NOMA) for cellular future radio access[C]//2013 IEEE 77th Vehicular Technology Conference (VTC Spring).Dresden:IEEE Press,2013:1-5. [6]DI B,SONG L,LI Y,et al.V2X meets NOMA:Non-orthogonal multiple access for 5G-enabled vehicular networks[J].IEEE Wireless Communation,2017,24(6):14-21. [7]DI B,SONG L,LI Y,et al.Non-orthogonal multiple access for high-reliable and low-latency V2X communications in 5G systems[J].IEEE Journal on Selected Areas in Communications,2017,35(10):2383-2397. [8]DI B,SONG L,LI Y,et al.NOMA-based low-latency and highreliable broadcast communications for 5G V2X services[C]//IEEE GLOBECOM.Singapore:IEEE Press,2017:1-6. [9]WANG B,ZHANG R,CHEN C,et al.Interference hypergraph-based 3D matching resource allocation protocol for NOMAV2X networks[J].IEEE Access,2019,7:90789-90800. [10]TANG L,XIAO J,ZHAO G F,et al.Energy Efficiency Based Dynamic Resource Allocation Algorithm for Cellular Vehicular Based on Non-Orthogonal Multiple Access[J].Journal of Electronics and Information Technology,2020,42(2):526-533. [11]ABDELHAMID S,HASSANEIN H S,TAKAHARA G.On-Road Caching Assistance for Ubiquitous Vehicle-Based Information Services[J].IEEE Transactions on Vehicular Technology,2015,64(12):5477-5492. [12]BLASZCZYSZYN B,GIOVANIDIS A.Optimal geographic caching in cellular networks[C]//2015 IEEE International Confe-rence on Communications.London:IEEE Press,2015:3358-3363. [13]HIEU N T,FRANCESCO M D,YLAJAASKI A.Virtual Ma-chine Consolidation with Multiple Usage Prediction for Energy-Efficient Cloud Data Centers[J].IEEE Transactions on Services Computing,2020,13(1):186-199. [14]YI P,LI G,ZHANG Z.Energy Optimized Implicit Collaborative Caching Scheme for Content Centric Networking[J].Journal of Electronics and Information Technology,2018,40(4):770-777. [15]LIU F,MA Z,WANG B,et al.A Virtual Machine Consolidation Algorithm Based on Ant Colony System and Extreme Learning Machine for Cloud Data Center[J].IEEE Access,2020,8:53-67. [16]SADIO O,NGOM I,LISHOU C.Design and Prototyping of a Software Defined Vehicular Networking[J].IEEE Transactions on Vehicular Technology,2020,69(1):842-850. [17]DEHGHAN M,JING B,SEETHARAM A,et al.On the complexity of optimal routing and content caching in heterogeneous networks[C]//2015 IEEEConference on Computer Communications (INFOCOM).Hong Kong:IEEE Press,2015:936-944. [18]CUI Y,YANG Z,XIAO S,et al.Traffic-Aware Virtual Machine Migration in Topology-Adaptive DCN[J].IEEE/ACM Transactions on Networking,2017,25(6):3427-3440. [19]BOUGHZALA B,ALI R B.OpenFlow supporting interdomain virtual machine migration[C]//2011 Eighth International Conference on Wireless and Optical Communications Networks (WOCN).Paris:IEEE Press,2011:1-7. [20]LIU J,LI Y,JIN D.SDN-based live VM migration across datacenters[C]//SIGCOMM Conference.Chicago:IEEE Press,2014:583-584. [21]WANG H,LI Y,ZHANG Y,et al.Virtual Machine Migration Planning in Software-Defined Networks[J].IEEE Transactions on Cloud Computing,2019,7(4):1168-1182. [22]LI J,CHEN W,XIAO M,et al.Efficient Video Pricing and Caching in Heterogeneous Networks[J].IEEE Transactions on Vehicular Technology,2016,65(10):8744-8751. [23]WANG C,LIANG C,YU F R,et al.Computation Offloadingand Resource Allocation in Wireless Cellular Networks With Mobile Edge Computing[J].IEEE Transactions on Wireless Communications,2017,16(8):4924-4938. [24]ROTA G C.The number of partitions of a set[J].The American Mathematical Monthly,1964,71:498-504. [25] HUANG Y,TAN T,WANG N,et al.Resource Allocation For D2D Communications With A Novel Distributed Q-Learning Algorithm In Heterogeneous Networks[C]//2018 International Conference on Machine Learning and Cybernetics (ICMLC).Chengdu:IEEE Press,2018:533-537. [26]HAO Y,CHEN M,HU L,et al.Energy Efficient Task Caching and Offloading for Mobile Edge Computing[J].IEEE Access,2018,6:11365-11373. [27]MISRA S,SAHA N.Detour:Dynamic task offloading in software-defined fog for IoT applications[J].IEEE Journal on Selected Areas in Communications,2019,37(5):1159-1166. [28]ELGENDY I A,ZHANG W,TIAN Y,et al.Resource allocation and computation offloading with data security for mobile edge computing[J].Future Generation Computer Systems-The International Journal of Escience,2019,100:531-541. |
[1] | 陈晶, 吴玲玲. 多源异构环境下的车联网大数据混合属性特征检测方法 Mixed Attribute Feature Detection Method of Internet of Vehicles Big Datain Multi-source Heterogeneous Environment 计算机科学, 2022, 49(8): 108-112. https://doi.org/10.11896/jsjkx.220300273 |
[2] | 于滨, 李学华, 潘春雨, 李娜. 基于深度强化学习的边云协同资源分配算法 Edge-Cloud Collaborative Resource Allocation Algorithm Based on Deep Reinforcement Learning 计算机科学, 2022, 49(7): 248-253. https://doi.org/10.11896/jsjkx.210400219 |
[3] | 李梦菲, 毛莺池, 屠子健, 王瑄, 徐淑芳. 基于深度确定性策略梯度的服务器可靠性任务卸载策略 Server-reliability Task Offloading Strategy Based on Deep Deterministic Policy Gradient 计算机科学, 2022, 49(7): 271-279. https://doi.org/10.11896/jsjkx.210600040 |
[4] | 方韬, 杨旸, 陈佳馨. D2D辅助移动边缘计算下的卸载策略优化 Optimization of Offloading Decisions in D2D-assisted MEC Networks 计算机科学, 2022, 49(6A): 601-605. https://doi.org/10.11896/jsjkx.210200114 |
[5] | 刘漳辉, 郑鸿强, 张建山, 陈哲毅. 多无人机使能移动边缘计算系统中的计算卸载与部署优化 Computation Offloading and Deployment Optimization in Multi-UAV-Enabled Mobile Edge Computing Systems 计算机科学, 2022, 49(6A): 619-627. https://doi.org/10.11896/jsjkx.210600165 |
[6] | 谢万城, 李斌, 代玥玥. 空中智能反射面辅助边缘计算中基于PPO的任务卸载方案 PPO Based Task Offloading Scheme in Aerial Reconfigurable Intelligent Surface-assisted Edge Computing 计算机科学, 2022, 49(6): 3-11. https://doi.org/10.11896/jsjkx.220100249 |
[7] | 周天清, 岳亚莉. 超密集物联网络中多任务多步计算卸载算法研究 Multi-Task and Multi-Step Computation Offloading in Ultra-dense IoT Networks 计算机科学, 2022, 49(6): 12-18. https://doi.org/10.11896/jsjkx.211200147 |
[8] | 彭冬阳, 王睿, 胡谷雨, 祖家琛, 王田丰. 视频缓存策略中QoE和能量效率的公平联合优化 Fair Joint Optimization of QoE and Energy Efficiency in Caching Strategy for Videos 计算机科学, 2022, 49(4): 312-320. https://doi.org/10.11896/jsjkx.210800027 |
[9] | 宋涛, 李秀华, 李辉, 文俊浩, 熊庆宇, 陈杰. 大数据时代下车联网安全加密认证技术研究综述 Overview of Research on Security Encryption Authentication Technology of IoV in Big Data Era 计算机科学, 2022, 49(4): 340-353. https://doi.org/10.11896/jsjkx.210400112 |
[10] | 梁俊斌, 张海涵, 蒋婵, 王天舒. 移动边缘计算中基于深度强化学习的任务卸载研究进展 Research Progress of Task Offloading Based on Deep Reinforcement Learning in Mobile Edge Computing 计算机科学, 2021, 48(7): 316-323. https://doi.org/10.11896/jsjkx.200800095 |
[11] | 宋海宁, 焦健, 刘永. 高速公路中的移动边缘计算研究 Research on Mobile Edge Computing in Expressway 计算机科学, 2021, 48(6A): 383-386. https://doi.org/10.11896/jsjkx.200900212 |
[12] | 唐亮, 李飞. 基于决策树的车联网安全态势预测模型研究 Research on Forecasting Model of Internet of Vehicles Security Situation Based on Decision Tree 计算机科学, 2021, 48(6A): 514-517. https://doi.org/10.11896/jsjkx.200700158 |
[13] | 俞建业, 戚湧, 王宝茁. 基于Spark的车联网分布式组合深度学习入侵检测方法 Distributed Combination Deep Learning Intrusion Detection Method for Internet of Vehicles Based on Spark 计算机科学, 2021, 48(6A): 518-523. https://doi.org/10.11896/jsjkx.200700129 |
[14] | 范艳芳, 袁爽, 蔡英, 陈若愚. 车载边缘计算中基于深度强化学习的协同计算卸载方案 Deep Reinforcement Learning-based Collaborative Computation Offloading Scheme in VehicularEdge Computing 计算机科学, 2021, 48(5): 270-276. https://doi.org/10.11896/jsjkx.201000005 |
[15] | 李振江, 张幸林. 减少核心网拥塞的边缘计算资源分配和卸载决策 Resource Allocation and Offloading Decision of Edge Computing for Reducing Core Network Congestion 计算机科学, 2021, 48(3): 281-288. https://doi.org/10.11896/jsjkx.200700025 |
|