计算机科学 ›› 2022, Vol. 49 ›› Issue (11A): 210800180-5.doi: 10.11896/jsjkx.210800180
陈孜卓, 林夕, 王中卿
CHEN Zi-zhuo, LIN Xi, WANG Zhong-qing
摘要: 在线辩论中作者通常会使用情绪化的语言来阐述自己的观点,表达方式较为随意。而论据作为对观点的佐证,则更多地包含了作者的立场倾向,因此论据信息对于立场识别有很大的帮助。基于BERT构建了论据边界识别模型,以提升在线辩论中文本立场分类的效果。首先利用BERT从辩论文本中抽取出与辩论主题相关的论据;然后将论据信息与文本信息进行融合,利用BERT模型得到辩论文本的立场分类结果。在英文在线辩论数据集上进行实验,与仅使用文本信息的BERT立场分类模型和其他机器学习模型相比,基于论据边界识别的模型在文本立场的分类效果上有更好的表现。
中图分类号:
[1]LIU W,PENG X,LI C,et al.A Survey on Stance Detection [J].Journal of Chinese Information Processing,2020,34(12):1-8. [2]SOMASUNDARAN S,WIEBE J.Recognizing stances in ideological online debates [C]//Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text.2010:116-124. [3]SRIDHAR D,FOULDS J,HUANG B,et al.Joint models of disagreement and stance in online debate [C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.2015:116-125. [4]ZARRELLA G,MARSH A.MITRE at semeval-2016 task 6:Transfer learning for stance detection [C]//Proceedings of the 10th International Workshop Semantic Eval.2016:458-463. [5]DU J,XU R,HE Y,et al.Stance classification with target-specific neural attention [C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.2017:3988-3994. [6]MOHTARAMI M,BALY R,GLASS J,et al.Automatic stance detection using end-to-end memory networks [C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:767-776. [7]KU L.UTCNN:A deep learning model of stance classification on social media text [C]//Proceedings of the 26th International Conference on Computational Linguistics.2016:1635-1645. [8]VIJAYARAGHAVAN P,VOSOUGHI S,ROY D.Automaticdetection and categorization of election-related tweets [C]//Proceedings of the 10th International Conference on Web and Social Media.2016:703-706. [9]AUGENSTEIN I,ROCKTÄSHEL T,VLACHOS A,et al.Stance detection with bidirectional conditional encoding [C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:876-885. [10]XU C,PARIS C,NEPAL S,et al.Cross-target stance classification with self-attention networks [C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:778-783. [11]WALKER M,ANAND P,ABBOTT R,et al.Stance classification using dialogic properties of persuasion [C]//Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2012:592-596. [12]HANSAN K S,NG V.Why are you taking this stance? identifying and classifying reasons in ideological debates [C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.2014:751-762. [13]HU M H,PENG Y X,HUANG Z,et al.Open-domain targeted sentiment analysis via span-based extraction and classification [C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:537-546. [14]THOMAS M,PANG B,LEE L.Get out the vote:Determining support or opposition from congressional floor-debate transcripts [C]//Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing.2006:327-335. [15]BURFOOT C,BIRD S,BALDWIN T.Collective classification of congressional floor-debate transcripts [C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies.2011:1506-1515. [16]AGRAWAL R,RAJAGOPALAN S,SRIKANT R,et al.Mining newsgroups using networks arising from social behavior [C]//Proceedings of the 12th International Conference on World Wide Web.2003:529-535. [17]FAULKNER A.Automated classification of stance in studentessays:An approach using stance target information and the Wikipedia link-based measure [C]//Proceedings of The Twenty-Seventh International Flairs Conference.2014:174-179. [18]HANSAN K S,NG V.Stance classification of ideological debates:Data,models,features,and constraints [C]//Proceedings of the Sixth International Joint Conference on Natural Language Processing.2013:1348-1356. [19]ANAND P,WALKER M,ABBOTT R,et al.Cats rule anddogsdrool!:Classifying stance in online debate [C]//Procee-dings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis.2011:1-9. [20]LI C,PORCO A,GOLDWASSER D.Structured representation learning for online debate stance prediction [C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:3728-3739. [21]MOHAMMAND S,KIRITCHEKO S,SOBHANI P,et al.Semeval-2016 task 6:Detecting stance in tweets [C]//Proceedings of the 10th International Workshop on Semantic Evaluation.2016:31-41 [22]SUN Q,WANG Z,ZHU Q,et al.Exploring various linguistic features for stancedetection [C]//Proceedings of the 5th CCF Conference on Natural Language Processing and Chinese Computing.2016:840-847. [23]DIAN Y,JIN Q,WU H.Stance detection in Chinese microblogs via fusing multiple text features [J].Computer Engineering and Applications,2017,53(21):77-84. [24]HU R,ZENG X.Stance detection based on BERT-LSTMCNN[J].Information Technology,2020,44(2):93-97,102. [25]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need [C]//Proceedings of the 31st Conference on Neural Information Processing Systems.2017:5998-6008. [26]KINGMA D P,BA J.Adam:A method for stochastic optimization [C]//Proceedings of the 3rd International Conference on Learning Representations.2015. |
[1] | 于家畦, 康晓东, 白程程, 刘汉卿. 一种新的中文电子病历文本检索模型 New Text Retrieval Model of Chinese Electronic Medical Records 计算机科学, 2022, 49(6A): 32-38. https://doi.org/10.11896/jsjkx.210400198 |
[2] | 康雁, 吴志伟, 寇勇奇, 张兰, 谢思宇, 李浩. 融合Bert和图卷积的深度集成学习软件需求分类 Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution 计算机科学, 2022, 49(6A): 150-158. https://doi.org/10.11896/jsjkx.210500065 |
[3] | 余本功, 张子薇, 王惠灵. 一种融合多层次情感和主题信息的TS-AC-EWM在线商品排序方法 TS-AC-EWM Online Product Ranking Method Based on Multi-level Emotion and Topic Information 计算机科学, 2022, 49(6A): 165-171. https://doi.org/10.11896/jsjkx.210400238 |
[4] | 郭雨欣, 陈秀宏. 融合BERT词嵌入表示和主题信息增强的自动摘要模型 Automatic Summarization Model Combining BERT Word Embedding Representation and Topic Information Enhancement 计算机科学, 2022, 49(6): 313-318. https://doi.org/10.11896/jsjkx.210400101 |
[5] | 韦入铭, 陈若愚, 李晗, 刘旭红. 基于深度学习与文本计量的技术趋势分析 Analysis of Technology Trends Based on Deep Learning and Text Measurement 计算机科学, 2022, 49(11A): 211100119-6. https://doi.org/10.11896/jsjkx.211100119 |
[6] | 朱若尘, 杨长春, 张登辉. EGOS-DST:对话现象感知和模式引导的一步对话状态追踪算法 EGOS-DST:Efficient Schema-guided Approach to One-step Dialogue State Tracking for Diverse Expressions 计算机科学, 2022, 49(11A): 210900246-7. https://doi.org/10.11896/jsjkx.210900246 |
[7] | 程思伟, 葛唯益, 王羽, 徐建. BGCN:基于BERT和图卷积网络的触发词检测 BGCN:Trigger Detection Based on BERT and Graph Convolution Network 计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133 |
[8] | 董哲, 邵若琦, 陈玉梁, 翟维枫. 基于BERT和对抗训练的食品领域命名实体识别 Named Entity Recognition in Food Field Based on BERT and Adversarial Training 计算机科学, 2021, 48(5): 247-253. https://doi.org/10.11896/jsjkx.200800181 |
[9] | 陈德, 宋华珠, 张娟, 周泓林. 融合BERT和记忆网络的实体识别 Entity Recognition Fusing BERT and Memory Networks 计算机科学, 2021, 48(10): 91-97. https://doi.org/10.11896/jsjkx.200900015 |
[10] | 杜琳, 曹东, 林树元, 瞿溢谦, 叶辉. 基于BERT与Bi-LSTM融合注意力机制的中医病历文本的提取与自动分类 Extraction and Automatic Classification of TCM Medical Records Based on Attention Mechanism of BERT and Bi-LSTM 计算机科学, 2020, 47(11A): 416-420. https://doi.org/10.11896/jsjkx.200200020 |
[11] | 王子牛, 姜猛, 高建瓴, 陈娅先. 基于BERT的中文命名实体识别方法 Chinese Named Entity Recognition Method Based on BERT 计算机科学, 2019, 46(11A): 138-142. |
[12] | 章慧,陈宏明. 融合SUSAN算法和Robert算法的图像边缘检测滤波处理技术 Hybrid SUSAN Algorithm and Robert Algorithm for Image Edge Detection Filtering Technique 计算机科学, 2013, 40(3): 302-304. |
[13] | 游福成 杨炳儒. 基于Hilbert空间理论的图像知识发现 计算机科学, 2005, 32(8): 149-151. |
|