计算机科学 ›› 2022, Vol. 49 ›› Issue (11A): 210800180-5.doi: 10.11896/jsjkx.210800180

• 人工智能 • 上一篇    下一篇

基于论据边界识别的立场分类研究

陈孜卓, 林夕, 王中卿   

  1. 苏州大学计算机科学与技术学院 江苏 苏州 215006
  • 出版日期:2022-11-10 发布日期:2022-11-21
  • 通讯作者: 王中卿(wangzq@suda.edu.cn)
  • 作者简介:(georgechen1827@foxmail.com)

Stance Detection Based on Argument Boundary Recognition

CHEN Zi-zhuo, LIN Xi, WANG Zhong-qing   

  1. School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China
  • Online:2022-11-10 Published:2022-11-21
  • About author:CHEN Zi-zhuo,born in 2000,undergraduate.His main research interests include natural language processing and sentiment analysis.
    WANG Zhong-qing,born in 1987,Ph.D,postgraduate supervisor.His main research interests include natural language processing and sentiment analysis.

摘要: 在线辩论中作者通常会使用情绪化的语言来阐述自己的观点,表达方式较为随意。而论据作为对观点的佐证,则更多地包含了作者的立场倾向,因此论据信息对于立场识别有很大的帮助。基于BERT构建了论据边界识别模型,以提升在线辩论中文本立场分类的效果。首先利用BERT从辩论文本中抽取出与辩论主题相关的论据;然后将论据信息与文本信息进行融合,利用BERT模型得到辩论文本的立场分类结果。在英文在线辩论数据集上进行实验,与仅使用文本信息的BERT立场分类模型和其他机器学习模型相比,基于论据边界识别的模型在文本立场的分类效果上有更好的表现。

关键词: 论据识别, BERT, 立场分类

Abstract: In online debates,people often use emotional language to make their points with casual expressions.As a supporting evidence of these points,argument contains more of the author’s stance polarity,so the argument information is of great help to the stance detection.In this paper,we propose a stance detection model of BERT via argument boundary recognition to improve the effect of classification on texts in online debates.We use bidirectional encoder representations from transformers(BERT) to screen the arguments related to the topics from the debate posts.Then we combine the argument information and the text information to predict the stance polarity via BERT.Experiments are carried out on the English online debate dataset,compared with the stance analysis model of BERT using only text information and other machine learning models,the model based on argument boundary recognition has better performance in stance detection.

Key words: Argument recognition, BERT, Stance detection

中图分类号: 

  • TP391
[1]LIU W,PENG X,LI C,et al.A Survey on Stance Detection [J].Journal of Chinese Information Processing,2020,34(12):1-8.
[2]SOMASUNDARAN S,WIEBE J.Recognizing stances in ideological online debates [C]//Proceedings of the NAACL HLT 2010 Workshop on Computational Approaches to Analysis and Generation of Emotion in Text.2010:116-124.
[3]SRIDHAR D,FOULDS J,HUANG B,et al.Joint models of disagreement and stance in online debate [C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing.2015:116-125.
[4]ZARRELLA G,MARSH A.MITRE at semeval-2016 task 6:Transfer learning for stance detection [C]//Proceedings of the 10th International Workshop Semantic Eval.2016:458-463.
[5]DU J,XU R,HE Y,et al.Stance classification with target-specific neural attention [C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence.2017:3988-3994.
[6]MOHTARAMI M,BALY R,GLASS J,et al.Automatic stance detection using end-to-end memory networks [C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:767-776.
[7]KU L.UTCNN:A deep learning model of stance classification on social media text [C]//Proceedings of the 26th International Conference on Computational Linguistics.2016:1635-1645.
[8]VIJAYARAGHAVAN P,VOSOUGHI S,ROY D.Automaticdetection and categorization of election-related tweets [C]//Proceedings of the 10th International Conference on Web and Social Media.2016:703-706.
[9]AUGENSTEIN I,ROCKTÄSHEL T,VLACHOS A,et al.Stance detection with bidirectional conditional encoding [C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.2016:876-885.
[10]XU C,PARIS C,NEPAL S,et al.Cross-target stance classification with self-attention networks [C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:778-783.
[11]WALKER M,ANAND P,ABBOTT R,et al.Stance classification using dialogic properties of persuasion [C]//Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2012:592-596.
[12]HANSAN K S,NG V.Why are you taking this stance? identifying and classifying reasons in ideological debates [C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.2014:751-762.
[13]HU M H,PENG Y X,HUANG Z,et al.Open-domain targeted sentiment analysis via span-based extraction and classification [C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics.2019:537-546.
[14]THOMAS M,PANG B,LEE L.Get out the vote:Determining support or opposition from congressional floor-debate transcripts [C]//Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing.2006:327-335.
[15]BURFOOT C,BIRD S,BALDWIN T.Collective classification of congressional floor-debate transcripts [C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies.2011:1506-1515.
[16]AGRAWAL R,RAJAGOPALAN S,SRIKANT R,et al.Mining newsgroups using networks arising from social behavior [C]//Proceedings of the 12th International Conference on World Wide Web.2003:529-535.
[17]FAULKNER A.Automated classification of stance in studentessays:An approach using stance target information and the Wikipedia link-based measure [C]//Proceedings of The Twenty-Seventh International Flairs Conference.2014:174-179.
[18]HANSAN K S,NG V.Stance classification of ideological debates:Data,models,features,and constraints [C]//Proceedings of the Sixth International Joint Conference on Natural Language Processing.2013:1348-1356.
[19]ANAND P,WALKER M,ABBOTT R,et al.Cats rule anddogsdrool!:Classifying stance in online debate [C]//Procee-dings of the 2nd Workshop on Computational Approaches to Subjectivity and Sentiment Analysis.2011:1-9.
[20]LI C,PORCO A,GOLDWASSER D.Structured representation learning for online debate stance prediction [C]//Proceedings of the 27th International Conference on Computational Linguistics.2018:3728-3739.
[21]MOHAMMAND S,KIRITCHEKO S,SOBHANI P,et al.Semeval-2016 task 6:Detecting stance in tweets [C]//Proceedings of the 10th International Workshop on Semantic Evaluation.2016:31-41
[22]SUN Q,WANG Z,ZHU Q,et al.Exploring various linguistic features for stancedetection [C]//Proceedings of the 5th CCF Conference on Natural Language Processing and Chinese Computing.2016:840-847.
[23]DIAN Y,JIN Q,WU H.Stance detection in Chinese microblogs via fusing multiple text features [J].Computer Engineering and Applications,2017,53(21):77-84.
[24]HU R,ZENG X.Stance detection based on BERT-LSTMCNN[J].Information Technology,2020,44(2):93-97,102.
[25]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need [C]//Proceedings of the 31st Conference on Neural Information Processing Systems.2017:5998-6008.
[26]KINGMA D P,BA J.Adam:A method for stochastic optimization [C]//Proceedings of the 3rd International Conference on Learning Representations.2015.
[1] 于家畦, 康晓东, 白程程, 刘汉卿.
一种新的中文电子病历文本检索模型
New Text Retrieval Model of Chinese Electronic Medical Records
计算机科学, 2022, 49(6A): 32-38. https://doi.org/10.11896/jsjkx.210400198
[2] 康雁, 吴志伟, 寇勇奇, 张兰, 谢思宇, 李浩.
融合Bert和图卷积的深度集成学习软件需求分类
Deep Integrated Learning Software Requirement Classification Fusing Bert and Graph Convolution
计算机科学, 2022, 49(6A): 150-158. https://doi.org/10.11896/jsjkx.210500065
[3] 余本功, 张子薇, 王惠灵.
一种融合多层次情感和主题信息的TS-AC-EWM在线商品排序方法
TS-AC-EWM Online Product Ranking Method Based on Multi-level Emotion and Topic Information
计算机科学, 2022, 49(6A): 165-171. https://doi.org/10.11896/jsjkx.210400238
[4] 郭雨欣, 陈秀宏.
融合BERT词嵌入表示和主题信息增强的自动摘要模型
Automatic Summarization Model Combining BERT Word Embedding Representation and Topic Information Enhancement
计算机科学, 2022, 49(6): 313-318. https://doi.org/10.11896/jsjkx.210400101
[5] 韦入铭, 陈若愚, 李晗, 刘旭红.
基于深度学习与文本计量的技术趋势分析
Analysis of Technology Trends Based on Deep Learning and Text Measurement
计算机科学, 2022, 49(11A): 211100119-6. https://doi.org/10.11896/jsjkx.211100119
[6] 朱若尘, 杨长春, 张登辉.
EGOS-DST:对话现象感知和模式引导的一步对话状态追踪算法
EGOS-DST:Efficient Schema-guided Approach to One-step Dialogue State Tracking for Diverse Expressions
计算机科学, 2022, 49(11A): 210900246-7. https://doi.org/10.11896/jsjkx.210900246
[7] 程思伟, 葛唯益, 王羽, 徐建.
BGCN:基于BERT和图卷积网络的触发词检测
BGCN:Trigger Detection Based on BERT and Graph Convolution Network
计算机科学, 2021, 48(7): 292-298. https://doi.org/10.11896/jsjkx.200500133
[8] 董哲, 邵若琦, 陈玉梁, 翟维枫.
基于BERT和对抗训练的食品领域命名实体识别
Named Entity Recognition in Food Field Based on BERT and Adversarial Training
计算机科学, 2021, 48(5): 247-253. https://doi.org/10.11896/jsjkx.200800181
[9] 陈德, 宋华珠, 张娟, 周泓林.
融合BERT和记忆网络的实体识别
Entity Recognition Fusing BERT and Memory Networks
计算机科学, 2021, 48(10): 91-97. https://doi.org/10.11896/jsjkx.200900015
[10] 杜琳, 曹东, 林树元, 瞿溢谦, 叶辉.
基于BERT与Bi-LSTM融合注意力机制的中医病历文本的提取与自动分类
Extraction and Automatic Classification of TCM Medical Records Based on Attention Mechanism of BERT and Bi-LSTM
计算机科学, 2020, 47(11A): 416-420. https://doi.org/10.11896/jsjkx.200200020
[11] 王子牛, 姜猛, 高建瓴, 陈娅先.
基于BERT的中文命名实体识别方法
Chinese Named Entity Recognition Method Based on BERT
计算机科学, 2019, 46(11A): 138-142.
[12] 章慧,陈宏明.
融合SUSAN算法和Robert算法的图像边缘检测滤波处理技术
Hybrid SUSAN Algorithm and Robert Algorithm for Image Edge Detection Filtering Technique
计算机科学, 2013, 40(3): 302-304.
[13] 游福成 杨炳儒.
基于Hilbert空间理论的图像知识发现

计算机科学, 2005, 32(8): 149-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!